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A B S T R A C T

Melanoma, despite its relatively low incidence compared to other types of skin cancer, accounts for a significant
proportion of skin cancer-related deaths. Early detection of melanoma is crucial for improving patient survival
rates. Deep learning algorithms, which heavily rely on data, are widely used in melanoma detection. However,
the performance of these algorithms is greatly influenced by the distribution of the dataset, particularly
class imbalance. In this manuscript, the authors present a novel method based on the Kemeny–Young rule
for optimal rank aggregation to address the class imbalance problem in melanoma detection. The proposed
approach aims to reduce class bias and enhance overall classification accuracy. Furthermore, a cost-sensitive
learning approach is introduced to improve the classifier’s ability to handle class imbalance effectively. This
novel cost-sensitive learning method utilizes Self-Adaptive Differential Evolution Optimization to determine
optimal weights for each class. Our approach differs from traditional methods that assign weights based
on predefined criteria. To evaluate the effectiveness of the proposed methods, extensive experiments and
ablation studies are conducted on the highly imbalanced ISIC 2020 dataset, which is widely used in melanoma
detection research. The Kemeny–Young rule-based majority voting achieves an overall error rate of 2.44%,
while the cost-sensitive learning based on the Self-Adaptive Differential Evolution approach achieves an
even lower error rate of 1.99%. Moreover, the proposed method achieves a sensitivity of 87.93% and a
specificity of 98.19%. These experimental results demonstrate the competitiveness and effectiveness of the
proposed methods in addressing the challenges posed by class imbalance and improving the accuracy of
melanoma detection. By effectively mitigating class imbalance, these methods improve the accuracy and
reliability of melanoma detection, thus offering valuable insights for developing advanced computer-aided
diagnosis systems in dermatology. The relevant codes for our proposed approach are publicly available at:
https://github.com/ctrl-gaurav/Handling-Imbalanced-Class-in-Melanoma.
. Introduction

Melanoma is a type of skin cancer that has become increasingly
idespread in the Western world. Despite being the least prevalent skin

ancer, Melanoma is responsible for 75% of skin cancer fatalities (Jain
t al., 2015). It is a cancer of melanocytes, which are neuroectodermal
ells that create the pigment and can be found in the eye, skin, throat,
ose, and rectum, among other places (Mayo Clinic, 2022). It can
ppear anywhere on the body and is most common in areas with a lot
f sun exposure. However, persons with dark skin are likelier to have
oncealed melanomas in areas with little sun exposure, such as their
alms, fingernails, and the soles of their feet (American Cancer Society,
022). Melanoma is usually discovered when a patient is concerned
bout a growth on their skin (Skin Cancer Foundation, 2022). This
ight be anything from a mole to many forms of lesion problems.
nly a close inspection can identify whether or not the anomaly is
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carcinogenic; if it is, additional testing can indicate whether it is
Melanoma or not (NHS, 2022).

Even though Melanoma is a very lethal illness, it offers a severe
threat to those affected. A substantial majority of its patients survive,
given that they were discovered early in the disease’s progress (Knack-
stedt et al., 2018). This is conceivable because our immune systems can
fight this type of cancer, and modern therapies such as immunotherapy
have dramatically improved survival rates (Nikolouzakis et al., 2020;
Rajaram et al., 2010). This makes the melanoma diagnostic procedure
even more critical, with the potential to save many lives in the future
since the impact of solar radiation will only intensify as a result of
heinous human acts against the earth’s climate parameters (Kato et al.,
2019; Fargnoli et al., 2012). With this in mind, several researchers have
sought to use information from numerous disciplines to identify poten-
tial and rapid diagnostic treatments for Melanoma (Sánchez-Monedero
et al., 2018; Yu et al., 2020).
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Fig. 1. Pie chart depicting severe class imbalance in ISIC-2020 database.

Deep Learning (DL) is one such area that is a strong contender for
utomating the diagnosis of any medical ailment (LeCun et al., 2015;
rivastava et al., 2023a). It is a Machine Learning approach that uses
eural networks, similar to human brains, to assist computers in learn-
ng and functioning intelligently. With body scans and images, deep
earning researchers have made significant progress recognizing various
ancer forms (Li et al., 2010). This aids in early illness detection,
ncreasing the odds of survival exponentially (Smaoui and Bessassi,
013). Unfortunately, in the case of Melanoma, the diagnostic process
s currently unable to reach patients locally worldwide (Lallas et al.,
013). Instead, they are forced to undergo extensive examinations by
ighly qualified doctors and numerous body tests, which cost signifi-
ant time and money in the diagnosis process alone (Aspinwall et al.,
008; Adepu et al., 2023).

Since deep learning is based on data, the data itself is sometimes the
ource of its limits. The model demands that the classes be perfectly
alanced and the data be plentiful enough for the model to acquire
hose features quickly (Johnson and Khoshgoftaar, 2019; Pradhan et al.,
020, 2021). The leading cause of concern in the Melanoma dataset was
lass disparity. Melanoma-infected patients had a significantly lower
umber of images than non-melanoma-infected patients, as shown in
ig. 1. So, while training the model on this dataset, the model quickly
icks up on the majority-class features and correctly classifies them.
owever, it struggles to distinguish between minority class samples.
ecause the minority class traits were not present at sufficient levels
o accurately differentiate between them during the learning phase,
he model typically classifies all those minority class samples to the
ajority class (Dong et al., 2018).

The dataset is extremely hard to discover every time a new disease
merges. For example, recently, when the COVID-19 pandemic hit
orldwide, we had significantly fewer no. of COVID-19 infected images

n the dataset (Oh et al., 2020; Srivastava et al., 2022b). The issue
f class imbalance has been the subject of several research projects
n the past (Wang et al., 2021; Khan et al., 2022; Tan et al., 2019).
esearchers are continually addressing this subject of class inequal-

ty (Srivastava et al., 2022a; Chamseddine et al., 2022; Chakraborty
t al., 2021; Sun et al., 2022). Various established methods such as
versampling, undersampling, and Synthetic Minority Oversampling
echnique (SMOTE) have been developed to tackle class imbalance

ssues. Despite their respective merits and drawbacks, these strategies
ave been applied across various fields, such as medical imaging,
hich often involves a scarcity of afflicted individuals. In the realm
f deep learning-based models, the issue of imbalanced data has been
pproached through techniques such as data sampling, class weighting,
ata augmentation, etc. (Saini and Susan, 2020). The authors have
xamined those strategies in this manuscript and briefly analyzed their
enefits and drawbacks.

The present study introduces a novel approach to tackling class
mbalance concerns. The authors’ methodology entails utilizing the

emeny–Young rule to aggregate the rankings of DCNN classifiers

2

efficiently. Specifically, distinct classifiers are employed to identify
and differentiate between various dataset segments. In deep learning,
ensemble learning algorithms have become popular for consolidating
multiple classifiers’ strengths to train an ensemble model that surpasses
their individual performances (Chen et al., 2019). To address the class
imbalance issue, it is common practice to assign different weights
to various classes; however, determining the most effective weights
presents a formidable challenge (Ren et al., 2018). Typically, weights
are computed by dividing the number of class samples by the product of
the number of classes and the class samples, yielding satisfactory out-
comes. Nevertheless, alternative weight combinations can be employed
to achieve superior results. The authors comprehensively analyzed
various techniques to determine optimal weight values, detailing their
respective merits and limitations.

Furthermore, the authors proposed a meta-heuristic approach called
‘‘weighted class training with Self-Adaptive Differential Evolution Op-
timization’’ as their second technique. Meta-heuristic algorithms, in-
cluding evolutionary, genetic and swarm-based, are a few alternatives
accessible for optimization (Salcedo-Sanz et al., 2014; Chopard and
Tomassini, 2018; Maier et al., 2019). Evolutionary algorithms, in par-
ticular, are a global optimization approach that can handle higher-
dimensional problems. As a result, an evolutionary algorithm-based op-
timization technique was selected in this study (Bozorg-Haddad et al.,
2017). These algorithms can deal with evaluation functions that may
not produce optimal results within a specific time frame, and they are
resistant to noise in the evaluation process (Maier et al., 2014). Further-
more, they can be customized and tailored to specific issues. However,
determining which evolutionary approach is ideal for a particular task
has been the subject of numerous studies.

The proposed techniques exhibited superior accuracy and class
imbalance mitigation capabilities compared to existing state-of-the-art
methods. This accomplishment can be deemed a valuable contribution
to addressing the challenge of class imbalance and boosting classifier
performance in biomedical imaging. In addition, by removing the need
for a first checkup and using a computerized test for a skin issue
to determine whether the patient is likely to have Melanoma, this
proposed model may be put into use practically.

Our research’s primary contributions are:

1. A novel approach based on the Kemeny–Young rule was in-
troduced for majority voting to address class biases. The au-
thors leveraged this rule to optimally aggregate the ranks of
DCNN classifiers, thereby enhancing the cumulative classifier
performance.

2. A novel cost-sensitive learning method utilizing Self-Adaptive
Differential Evolution optimization was proposed to determine
optimal class weights for cost-sensitive learning, effectively mit-
igating the imbalance class problem. The authors extensively
compared this approach with the conventional class weights
calculation method to demonstrate its superiority.

3. The proposed approach has experimented with six different
DCNN classifiers backbone. Multiple ablation studies were con-
ducted, including the utilization of both standard loss function
and modified loss function incorporating alpha-balanced focal
loss, to ensure the robustness of the proposed methodology.

4. The authors conducted a comprehensive investigation of various
strategies for mitigating class imbalance issues in melanoma
detection. A comparative study was performed to analyze the
effectiveness of existing methods compared to the proposed
methodology.

The remaining study materials may be summed up as follows.
Section 2 discusses the past researchers’ work for melanoma detec-
tion and their strategies to address class inequality. Section 3 covers
the theoretical background of the study. The proposed methods and
the presented methodology in this study are described in Section 4.
Finally, the experimentation and the outcomes of the aforementioned

experiments are disclosed and covered in Section 5.
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2. Related work

Melanoma, a prevalent disease in contemporary times, has been
extensively studied with regard to early detection and simple thera-
pies. To gain a comprehensive understanding of the issue, the authors
conducted a meticulous examination of previous significant contribu-
tions made by numerous medical specialists, scientists, and researchers.
Based on the literature review, various methods and approaches have
been proposed in the past, which have been thoroughly investigated for
their merits and limitations. These findings provided valuable insights
and informed the authors’ novel approach to the problem of melanoma
diagnosis. In this study, the works analyzed are briefly summarized.

2.1. Imbalanced classification approaches

In the domain of machine learning and data mining, addressing
imbalanced classification poses a significant challenge, necessitating
the utilization of cost-sensitive learning strategies such as weighted ex-
treme learning machines (W-ELM) to mitigate biases towards majority
classes (Ling and Sheng, 2008). However, the effectiveness of W-ELM
may be limited due to suboptimal weight assignments based solely
on empirical costs. To overcome this limitation, Li et al. proposed a
novel approach known as MOAC-ELM (Multi-Objective Optimization-
based Adaptive Class-Specific Cost Extreme Learning Machine) for
solving classification problems (Li et al., 2022). The primary objective
of the MOAC-ELM method is to tackle the inherent issues associated
with imbalanced datasets by incorporating class-specific information
into the initial weight assignment process. By considering the unique
characteristics of each class, the algorithm enhances the representation
of minority classes through the introduction of penalty factors. Addi-
tionally, the authors employed an ensemble strategy to make optimal
decisions after the optimization process. To evaluate the effective-
ness of MOAC-ELM, extensive experiments were conducted on various
benchmark datasets, as well as a real-world application dataset. The
experimental results provided compelling evidence for the robustness
and reliability of the proposed MOAC-ELM method.

While an extreme learning machine (ELM) is renowned for its
rapid execution and superior generalization capabilities, it often lacks
effective strategies for handling imbalanced datasets (Huang et al.,
2011). Recognizing this limitation, Xiao et al. introduced a novel ELM
model called Class-Specific Cost Regulation Extreme Learning Machine
(CCR-ELM), along with its kernel-based extension (Xiao et al., 2017).
CCR-ELM was specifically developed to address binary and multiclass
classification problems characterized by imbalanced data distributions.
The key contribution of CCR-ELM lies in the introduction of class-
specific regulation costs for misclassification, effectively balancing the
trade-off between structural risk and empirical risk. By assigning dis-
tinct regulation costs to different classes, CCR-ELM aims to alleviate the
challenges associated with imbalanced data distributions. To evaluate
the performance of CCR-ELM, extensive experiments were conducted
using various benchmark datasets, as well as a real-world application
dataset related to blast furnace status diagnosis. The experimental
findings unequivocally demonstrated the superiority of CCR-ELM over
the original ELM method and other existing ELM-based approaches
specifically designed for imbalanced learning scenarios.

2.2. Deep learning based approaches for melanoma classification

Li et al. developed two deep learning models, named the Lesion In-
dexing Network (LIN) and Lesion Feature Network (LFN), to tackle the
challenges of skin lesion image processing, including lesion classifica-
tion, segmentation, and feature extraction from dermoscopy images (Li
and Shen, 2018). They trained and evaluated these models on the ISIC
2017 dataset. In addition, two Fully Convolutional Residual Networks
(FCRN-88) have been trained on subsets of the same dataset for coarse

lesion classification and segmentation purposes (Codella et al., 2018).

3

To enhance the accuracy of lesion classification, the authors proposed
using a Lesion Indexing Calculation Unit (LICU) that computes the
significance of individual pixels. The FCRN-88 models were refined
using a distance map generated by LICU. Furthermore, the authors
proposed the LFN for extracting dermoscopic features, which achieved
an average precision of 0.422 and a sensitivity of 0.693. For lesion
segmentation, their proposed approach achieved an accuracy of 75.3%,
while for lesion classification, it achieved 91.2% accuracy. Finally, for
dermoscopic feature extraction of lesions, an accuracy of 84.8% was
obtained.

Adegun et al. have introduced a novel approach to melanoma diag-
nosis using an encoder–decoder network combined with sub-networks
of encoder and decoder, where skip pathways connect the semantic
level of encoder and decoder feature maps for feature extraction (Ade-
gun and Viriri, 2019). The proposed approach is based on a multi-scale,
multi-stage approach that employs softmax as its classifier for pixel-
wise classification. The approach has been tested and trained on two
public datasets of skin lesion images, namely the ISIC 2017 and PH2
databases, without sample re-weighting in the loss function, which
reduces system resources while enabling real-time melanoma diagnosis,
with an average processing time of only 5 s per dermoscopy image. On
both datasets, the proposed approach achieved an overall accuracy of
95% and a dice coefficient of 92% for the ISIC 2017 dataset, while
the PH2 dataset produced an overall accuracy of 95% and a dice
coefficient of 93%. In another study, Kassem et al. (2020) performed
an 8-class classification on the ISIC-2019 dataset, using the pre-trained
network GoogleNet to extract deep features from lesion images. With
a transfer learning approach, they achieved an accuracy of 94.92%,
including an ‘‘unknown class’’ for images that did not belong to any
of the classes. Additionally, Kaur et al. (2022) designed a novel Deep
Convolutional Neural Network (DCNN) architecture that is lightweight
and efficient than other state-of-the-art approaches, utilizing a random
over-sampling method with standard data augmentation techniques
to handle the class imbalance problem. With this approach, the au-
thors obtained an accuracy of 81.41%, 88.23%, and 90.42% on the
ISIC-2016, ISIC-2017, and ISIC-2020 databases, respectively.

In another study, Esteva et al. proposed a single CNN model to
classify skin lesion images using just disease and pixel labels as in-
put (Esteva et al., 2017). This proposed model is trained on a large
dataset of 129,450 medical images consisting of 2032 various diseases.
This dataset is roughly double any database of clinical images discov-
ered before them. The obtained 9-fold cross-validation accuracy was
72.1%. Further, Codella et al. proposed a deep learning model to seg-
ment, analyze and detect melanoma from skin lesion images (Codella
et al., 2017). The proposed model is accompanied by an ensemble of
well-established machine learning methods. It is trained and tested on
a large public dataset consisting of 900 images for training and 379
images for testing the model. Finally, Xie et al. proposed a method
to classify melanocytic tumors in their two categories,i.e., benign and
malignant, by analyzing clinical dermoscopic images (Xie et al., 2016).
The authors have identified 57 total descriptive features of the lesion
objects, including 50 color and texture and another seven lesion border
features. With this, they surpass the systems that only rely on standard
shape features of these lesion objects.

2.3. Metaheuristic optimization and feature selection based approaches

Sayed et al. proposed a melanoma prediction model that combines
the convolutional neural network (CNN) architecture with the Bald
Eagle Search (BES) optimization technique (Sayed et al., 2021). They
tackled the class imbalance problem using the random oversampling
and standard data augmentation techniques, achieving an accuracy of
98.37% on the SIIM-ISIC 2020 dataset. İlkin et al. devised a hybrid clas-
sification algorithm by integrating the Support Vector Machine (SVM)
algorithm with a heuristic optimization algorithm (İlkin et al., 2021).

This approach, known as hybSVM, enhanced the SVM model utilizing a
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Gaussian Radial Basis Function (RBF). The algorithm was evaluated on
two distinct datasets, namely ISIC and PH2, employing a 10-fold cross-
validation. The results demonstrated notable achievements, including
AUC values of 98% and 97% for the respective datasets, along with
efficient operation times of 26.5 s and 11.9 s.

Furthermore, Oliveira et al. proposed a computational method
based on correlation-based feature selection for classifying skin le-
sions (Oliveira et al., 2019). They explored various color spaces for
extracting color and texture-related characteristics, alongside several
feature selection methods and classifiers. With the proposed feature
selection method, an accuracy of 91.6% was attained, which further im-
proved to 92.3% when utilizing the complete set of features. The study
utilized a set of 50 features obtained through the proposed method.
Bansal et al. introduced handcrafted feature extraction techniques
specifically designed for dermoscopic images (Bansal et al., 2022). They
presented two binary variants of the Harris Hawk Optimization (HHO)
algorithm, namely BHHO-S and BHHO-V, for feature selection. The
selected features were subsequently employed by a classifier to classify
dermoscopic images as melanoma or non-melanoma. Experimental re-
sults revealed the superior performance of BHHO-S features compared
to existing metaheuristic algorithms. Moreover, the study highlighted
the efficacy of texture features extracted using local binary patterns and
color features in achieving higher classification accuracy compared to
global and local texture feature extraction techniques.

Deep learning is a data-driven method where the classes should
be balanced appropriately enough for a model to learn those features
and discriminate between classes. Many breakthroughs and promising
results have been achieved in biomedical imaging, and researchers have
worked to solve the imbalanced class problem. However, the majority
of them have only explored the random over-sampling method. So,
in this manuscript, the authors have proposed two novel methods to
solve the class imbalance problem. The authors have also contrasted
various currently used approaches with their suggestions and shown
their benefits and drawbacks.

3. Presented methodology

3.1. Dataset preprocessing

As part of the data preprocessing step for this research, the images
used were found to have varying sizes, necessitating a resizing opera-
tion to a standard size of 256 × 256 pixels, followed by RGB Reordering.
This produced a final input of a 256 × 256 × 3 matrix.

When downscaling images, careful consideration must be given to
void the potential loss of vital information. Such a decision requires a
horough examination of the dataset. For instance, in the case of MRI
cans for brain tumor classification, downsizing the images too much
an cause the tumor to be nearly invisible, negatively impacting the
raining accuracy. However, increasing the image size to very large
imensions, such as 512 × 512, may lead to memory overload on the
PU. Thus, it is critical to choose the most appropriate image size based
n experimental observations, to optimize memory efficiency while
etaining all essential information in the image. The sample images
rom ISIC 2020 dataset is shown in Fig. 2.

.2. Dataset division

In order to prevent model selection bias and mitigate overfitting, it
s deemed advisable to partition the data into distinct training, testing,
nd cross-validation sets. Although a model may exhibit a training
ccuracy rate of 99%, its performance may not be as exceptional
hen evaluated real-time. The variability in parameter estimations

s higher when the training dataset is smaller, and the same holds
or performance measures when the testing dataset is less substantial.
herefore, it is imperative to split the data in a manner that does not
esult in excessive variances. In our study, we partitioned the complete
ataset into three sections, with 80% allocated to training, and 10%

ach for validation and testing, as presented in Table 1.
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Table 1
Dataset division.

Training set Validation set Testing set Total

Benign 26 034 3254 3254 32 542
Malignant 468 58 58 584

Table 2
Values and data augmentation techniques used to oversample the minority class.

Data augmentation technique Value

Rotation range 15
Width shift range 0.15
Height shift range 0.15
Zoom range 0.15
Shear range 0.2
Horizontal flip True

Table 3
8-fold dataset division for the Kemeny–Young optimal rank aggregation method.

Folds Benign Malignant

Fold 1 29 288/8 = 3661 526 × 6 = 3156
Fold 2 29 288/8 = 3661 526 × 6 = 3156
Fold 3 29 288/8 = 3661 526 × 6 = 3156
Fold 4 29 288/8 = 3661 526 × 6 = 3156
Fold 5 29 288/8 = 3661 526 × 6 = 3156
Fold 6 29 288/8 = 3661 526 × 6 = 3156
Fold 7 29 288/8 = 3661 526 × 6 = 3156
Fold 8 29 288/8 = 3661 526 × 6 = 3156

3.3. 8-fold packets dataset division

In our Proposed Method-I, we employ eight data packets to train
eight sub-learners. To ensure a comprehensive evaluation, we first set
aside 10% of the data as a separate testing set. This resulted in a
training dataset consisting of 29,288 images in the benign class and
526 images in the malignant class. To address the class imbalance, we
applied augmentation techniques specifically designed for the malig-
nant class. The augmentation process, with detailed parameters and
techniques provided in Table 2, resulted in the augmentation of the
malignant class by a factor of six, yielding a total of 3156 augmented
images. Next, we performed an 8-fold division of the benign class,
ensuring an equal distribution of images among the folds. Each fold
contained 3661 packets, resulting in a balanced representation of the
benign class across the eight folds. Consequently, a single data packet
contained 3156 images in the malignant class and 3661 images in the
benign class. For clarity and reference, Table 3 provides a comprehen-
sive overview of the data division for both classes after implementing
the 8-fold packet division strategy.

This approach of dividing the dataset into separate folds serves
two key purposes. First, it helps address the class imbalance issue by
ensuring that the augmented malignant class is represented in each
fold. Second, it enables each sub-learner to be trained on a diverse
set of samples, including a balanced representation of both benign
and augmented malignant images. By leveraging this balanced training
data, our proposed method enhances the ability of the sub-learners
to learn discriminative features and contribute effectively to the final
classification decision. The 8-fold packet dataset division strategy is
instrumental in promoting a more robust and accurate learning process,
ultimately leading to improved melanoma detection performance.

3.4. Model training

In this study, we conducted experiments utilizing various pre-
trained deep convolutional neural network (DCNN) models to extract
features from histopathological images. As shown in Fig. 3, we froze
all layers of the pre-trained DCNN models except for the final layer,
and then flattened the extracted features. To mitigate overfitting,
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Fig. 2. Sample benign and malignant images from the dataset ISIC 2020.
Fig. 3. Modified DCNN model architecture.

a dropout layer was introduced after a fully connected layer with
1024 neurons was added. Next, we included a dense layer with two
neurons for classification purposes. The extracted deep features were
subsequently used to train a multilayer perceptron network, with the
sigmoid activation function employed for classification.

To optimize and enhance the deep learning models’ feature extrac-
tion and classification performance, various methods and parameters
were employed in this study. The loss function, optimizer, classifier,
and learning rate scheduler were all systematically discussed to provide
a comprehensive understanding of the models’ training methods and
parameters.

3.4.1. Loss function: alpha-balanced Focal Loss
Focal Loss is an improved version of Cross-Entropy Loss (CE) that

addresses class imbalance by down-weighting simple cases and assign-
ing more weight to hard or misclassified cases. The Focal Loss function
is defined as shown in Eq. (1).

FL
(

𝑝
)

= −𝛼
(

1 − 𝑝
)𝛾 log

(

𝑝
)

(1)
𝑡 𝑡 𝑡 𝑡
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where 𝑝𝑡 is defined as shown in Eq. (2).

𝑝𝑡 =

{

𝑝; if 𝑦 = 1
1 − 𝑝; otherwise

(2)

In the above equations, 𝛼𝑡 is a weighting factor that emphasizes the
importance of hard or misclassified cases, and 𝛾 is a focusing parameter
that controls the rate at which easy cases are down-weighted. When
𝛾 = 0 and 𝛼𝑡 = 1, Focal Loss reduces to Cross-Entropy Loss.

Focal Loss has two primary properties that make it ideal for ad-
dressing class imbalance issues. First, the modulating factor is close
to 1 when an example is misclassified, pt is modest, and the loss
remains unaffected. However, the factor approaches 0 as pt approaches
1, leading to the down-weighting of the loss for well-classified samples.
Second, the focusing parameter 𝛾 controls the rate at which easy cases
are down-weighted, with higher 𝛾 values increasing the impact of the
modulating factor.

The modulating factor reduces the loss contribution from simpler in-
stances and increases the range where an example experiences minimal
loss. For example, with 𝛾 = 2, an example with 𝑝𝑡 = 0.9 would have a
loss 100 percent less than CE, and with 𝑝𝑡 ≈ 0.968, it would have a loss
of 1000 percent less. Thus, it is crucial to correct misclassified samples,
whose loss is scaled down by at most 4x for 𝑝𝑡 ⩽ 0.5 and 𝛾 = 2.

In this study, we utilized alpha-balanced Focal Loss which assigns
weights to each class that are inversely proportional to their frequen-
cies, ensuring that each class contributes equally to the loss function. It
modifies the standard Focal Loss function by introducing an 𝛼-balance
parameter that allows for greater control over the weights assigned to
different classes. Specifically, this variant assigns a weight of (1 − 𝛼) to
negative examples and a weight of 𝛼 to positive examples, where 𝛼 is a
user-defined hyperparameter that determines the balance between the
two classes. The modified Focal Loss function with the alpha-balance
parameter is defined as shown in Eq. (3).

FL𝛼(𝑝𝑡) = −𝛼 (1 − 𝑝 )𝛾 log(𝑝 ) (3)
𝑡 𝑡 𝑡
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where 𝑝𝑡 and 𝛼𝑡 is defined as shown in Eqs. (4) and (5) respectively.

𝑝𝑡 =

{

𝑝 if 𝑦 = 1
1 − 𝑝 otherwise

(4)

and

𝛼𝑡 =

{

𝛼 if 𝑦 = 1
1 − 𝛼 otherwise

(5)

Here, 𝛼𝑡 represents the weight assigned to the true label 𝑦, and 𝑝𝑡
is the predicted probability for the true label. The term (1 − 𝑝𝑡)𝛾 is the
modulating factor that amplifies the loss for hard-to-classify examples
and reduces the loss for well-classified examples, as described in the
standard Focal Loss function.

3.4.2. Optimizer: Adam
In the present research, we employ the Adam optimization al-

gorithm to optimize our deep convolutional neural network model
during training. This algorithm utilizes an exponential decay scheme
to calculate the past gradients (𝑚𝑡) and past squared gradients (𝑣𝑡), as
demonstrated by Eqs. (6) and (7) respectively. The hyperparameters 𝛽1
nd 𝛽2 dictate the rate at which the mean and non-centered variance
f the gradient are forgotten, respectively. Through keeping track of
hese two measures, the Adam optimizer estimates the first and second
oments of the gradients and utilizes them to adaptively adjust the

earning rate.

𝑡 = 𝛽1𝑚𝑡−1 +
(

1 − 𝛽1
)

[

𝛿𝐿
𝛿𝑤𝑡

]

(6)

𝑣𝑡 = 𝛽2𝑣𝑡−1 +
(

1 − 𝛽2
)

[

𝛿𝐿
𝛿𝑤𝑡

]2
(7)

here,

1. 𝜖 = a small positive constant to avoid denominator becoming
zero when

(

𝑣𝑡− > 0
)

⋅
(

10−8
)

2. 𝜷1&𝜷2 = decay rates of the average of gradients in the above
two methods.

(

𝛽1 = 0.9&𝛽2 = 0.999)
3. 𝜶 denotes the step size or learning rate, which is typically set

to 0.001. It determines the magnitude of adjustment made to
the model’s parameters during each iteration of the optimization
process.

3.4.3. Classifier: Softmax
In order to classify the extracted features, a Softmax classifier has

been employed. The Softmax function is defined as shown in Eq. (8).

𝜎(𝐳)𝑖 = 𝑒𝑧𝑖
∑

𝑗 = 1𝐾𝑒𝑧𝑗
for 𝑖 = 1,… , 𝐾 (8)

here 𝐳 = (𝑧1,… , 𝑧𝐾 ) represents the vector of class scores and 𝜎(𝐳)𝑖
epresents the predicted probability of class 𝑖. This function converts
vector of real-valued scores into a probability distribution over 𝐾

lasses. The denominator in the equation ensures that the output is a
alid probability distribution, where all the values range between 0 and
and the sum of all values is equal to 1.

.4.4. Learning rate schedule : ReduceLROnPlateau
In this study, we employed the dynamic learning rate technique,

pecifically ReduceLROnPlateau. In the context of decay, the learning
ate may be computed according to the formula given in Eqs. (9) and
10) respectively, which utilizes the decay parameter 𝑑, iteration step
, and learning rate 𝜂.

𝑛+1 =
𝜂𝑛

1 + 𝑑𝑛
(9)

new learning rate = learning rate × factor (10)
6

3.5. Kemeny–Young method

Given a set of candidates 𝐶 = 𝑐1, 𝑐2,… , 𝑐𝑚 and a set of ranked lists
𝐿1, 𝐿2,… , 𝐿𝑘, where each ranked list 𝐿𝑖 is a permutation of 𝐶, the
goal of the Kemeny–Young method (Saari and Merlin, 2000; Levin and
Nalebuff, 1995) is to find a consensus ranking 𝜋 of the candidates that
minimizes the total Kendall distance from the ranked lists as shown
in Eq. (11).

Kemeny(𝜋) =
𝑘
∑

𝑖=1
𝑑𝐾 (𝐿𝑖, 𝜋) (11)

where 𝑑𝐾 (𝐿𝑖, 𝜋) is the Kendall distance between the ranked list 𝐿𝑖 and
the consensus ranking 𝜋 as shown in Eq. (12).

𝑑𝐾 (𝐿𝑖, 𝜋) =
∑

(𝑐𝑎 ,𝑐𝑏)∈inv(𝐿𝑖)
sgn(𝜋(𝑐𝑎) − 𝜋(𝑐𝑏)) (12)

where inv(𝐿𝑖) is the set of all pairs (𝑐𝑎, 𝑐𝑏) in the ranked list 𝐿𝑖 such
that 𝑐𝑎 appears before 𝑐𝑏 in 𝐿𝑖, and sgn(𝑥) is the sign function as shown
in Eq. (13).

sgn(𝑥) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑥 > 0
0 if 𝑥 = 0
−1 if 𝑥 < 0

(13)

To find the consensus ranking 𝜋, we can use the Kemeny–Young
method based on majority voting, which involves finding the candidate
that is preferred by the majority of voters in each pairwise compar-
ison (Ahmed et al., 2017). Specifically, we can define the pairwise
comparison matrix 𝑃 as shown in Eq. (14).

𝑃𝑎𝑏 =
𝑘
∑

𝑖=1
[𝑐𝑎 is ranked above 𝑐𝑏 in 𝐿𝑖] (14)

where [𝑐𝑎 is ranked above 𝑐𝑏 in 𝐿𝑖] is the indicator function that is
equal to 1 if 𝑐𝑎 is ranked above 𝑐𝑏 in ranked list 𝐿𝑖, and 0 otherwise.

Then, the consensus ranking 𝜋 can be obtained by solving the
integer linear programming problem shown in Eq. (15).

min
𝜋

∑

𝑎<𝑏
𝑃𝑎𝑏 sgn(𝜋(𝑎) − 𝜋(𝑏)) (15)

s.t. 𝜋(𝑎) ∈ 1, 2,… , 𝑚 ∀𝑎 ∈ 𝐶 (16)

𝜋(𝑎) ≠ 𝜋(𝑏) ∀𝑎, 𝑏 ∈ 𝐶, 𝑎 ≠ 𝑏 (17)

where 𝜋(𝑎) is the rank assigned to candidate 𝑐𝑎 in the consensus ranking
𝜋. The objective function minimizes the weighted sum of the Kendall
distances between the pairwise comparison matrix 𝑃 and the consensus
ranking 𝜋, and the constraints ensure that each candidate is assigned a
unique rank in the consensus ranking. The Kemeny–Young Method is
described in Algorithm 1.

3.6. Proposed Method-I: Kemeny–Young rule based majority voting

In the proposed Method-I, the entire dataset was partitioned into
eight folds, and eight separate submodels were trained on these par-
titions. Each classifier was trained to differentiate between the 1/8th
of the majority class images and those from the minority class. Thus,
there were eight base models or voters in total. When an image is fed
into the model, all eight voters predict and cast their votes. Finally,
we aggregate the majority vote using the Kemeny–Young method-based
majority voting and output the final predicted class as shown in Fig. 4.

Suppose we have a set of alternatives  = 𝑎1, 𝑎2,… , 𝑎𝑛 and a set of
𝑚 ranked preference orders 𝑃1, 𝑃2,… , 𝑃𝑚 over .

Let 𝑑(𝑎𝑖, 𝑎𝑗 ) denote the number of voters who rank 𝑎𝑖 ahead of 𝑎𝑗 ,
and 𝑑(𝑎𝑖, 𝑎𝑖) = 0. Then, the pairwise disagreement distance 𝐷𝑖𝑗 between
alternatives 𝑎𝑖 and 𝑎𝑗 is defined as shown in Eq. (18).

𝐷𝑖𝑗 =
𝑚
∑

𝑘=1
I(𝑎𝑖 is ranked ahead of 𝑎𝑗 in 𝑃𝑘) (18)

where I is the indicator function.
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Fig. 4. Flowchart for the majority voting based on Kemeny–Young optimal rank aggregation method.
Algorithm 1: Kemeny–Young Method
Input: 𝐷, a set of rankings
Output: A consensus ranking
Initialization: Set 𝐾 to be the number of candidates;
1: Compute the pairwise disagreements 𝑑𝑖𝑗 between candidates
𝑖 and 𝑗

𝑑𝑖𝑗 =
𝑛
∑

𝑘=1
(𝐷𝑖𝑘 < 𝐷𝑗𝑘) −

𝑛
∑

𝑘=1
(𝐷𝑖𝑘 > 𝐷𝑗𝑘)

2: Compute the Kendall tau distance between the pairwise
disagreements 𝑑𝑖𝑗 and the pairwise disagreements of a
candidate consensus ranking 𝑐𝑖𝑗 , where

𝜏 =
∑

𝑖<𝑗
sgn(𝑑𝑖𝑗 − 𝑐𝑖𝑗 )

and sgn(𝑥) is the sign function;
3: Optimize the Kendall tau distance by finding the consensus
ranking 𝑐∗ that minimizes

∑

𝑖<𝑗
|sgn(𝑑𝑖𝑗 − 𝑐𝑖𝑗 ) − sgn(𝑑𝑖𝑗 − 𝑐𝑖𝑗 )|

4: Output the consensus ranking 𝑐∗;

The Kemeny distance 𝐾(𝑃 ,𝑄) between two preference orders 𝑃 and
𝑄 is defined as the number of pairwise disagreements between 𝑃 and
𝑄 shown in Eq. (19).

𝐾(𝑃 ,𝑄) =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐷𝑖𝑗 ⋅ I(𝑃 (𝑎𝑖) is ranked ahead of 𝑃 (𝑎𝑗 )) (19)

but 𝑄(𝑎𝑖) is ranked ahead of 𝑄(𝑎𝑗 ) where 𝑃 (𝑎𝑖) denotes the rank of
alternative 𝑎𝑖 in 𝑃 .

Given 𝑚 ranked preference orders, the goal of the Kemeny–Young
method is to find a consensus order 𝐶 that minimizes the sum of
7

Kemeny distances to the input preference orders as shown in Eq. (20).

𝐶 = argmin𝑃 ∈ 
∑

𝑘 = 1𝑚𝐾(𝑃 , 𝑃𝑘) (20)

where  is the set of all possible preference orders over .
The algorithmic steps of the majority voting ensemble model based

on the Kemeny–Young method are presented in Algorithm 2.

Algorithm 2: Kemeny–Young Method with Majority Voting
Input: Set of rankings 𝑅1, 𝑅2, ..., 𝑅𝑘
Output: Aggregated ranking 𝑅
1: Compute the pairwise disagreement matrix 𝐷𝑖,𝑗 for all
𝑖, 𝑗 ∈ 1, 2, ..., 𝑘, where 𝐷𝑖,𝑗 represents the number of items
where 𝑅𝑖 and 𝑅𝑗 disagree.

2: Compute the weighted pairwise disagreement matrix
𝑊𝑖,𝑗 =

1
|𝑆𝑖,𝑗 |

∑

𝑥∈𝑆𝑖,𝑗
𝑤(𝑥), where 𝑆𝑖,𝑗 is the set of items where

𝑅𝑖 and 𝑅𝑗 disagree, and 𝑤(𝑥) is the weight of item 𝑥.
3: Compute the sum of weights for each item, 𝑊𝑖 =

∑

𝑗≠𝑖 𝑤𝑖,𝑗 .
4: Compute the score for each item, 𝑠𝑖 =

∑

𝑗≠𝑖 𝑤𝑖,𝑗 −
∑

𝑗≠𝑖 𝑤𝑗,𝑖.
5: Sort the items in decreasing order of score and construct the
aggregated ranking 𝑅.

3.7. Self-adaptive differential evolution algorithm

Let the objective function as 𝑓 ∶ R𝑛 → R
where 𝑛 is the number of dimensions in the search space.

The Self-Adaptive Differential Evolution Algorithm (SA-DEO) uses
a separate evolution strategy to adapt the scaling factor for each
candidate solution (Qin and Suganthan, 2005; Omran et al., 2005; Brest
et al., 2006; Srivastava et al., 2023b). In SA-DEO, the scaling factor is
updated using the rule shown in Eq. (21).

𝐹 (𝑡+1)
𝑖 = 𝐹 (𝑡)

𝑖 + 𝜂 ⋅ (𝐹 (𝑡) − 𝐹 (𝑡)
𝑖 ) (21)

where 𝐹𝑖 is the scaling factor for candidate solution 𝑖, 𝐹 (𝑡) is the mean
scaling factor for the current population, and 𝜂 is a scaling factor for
the adaptation rate.
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Algorithm 3: Self-Adaptive Differential Evolution Optimization
to optimize assigned weights of a class in weighted class training

Input: Training data 𝑥(𝑖), 𝑦(𝑖)𝑖 = 1𝑚, loss function 𝑙(𝑦, 𝑓 (𝑥, 𝜃)),
machine learning model 𝑓 (𝑥, 𝜃), population size 𝑁 , maximum
number of iterations 𝑇𝑚𝑎𝑥, scaling factor 𝐹 , adaptation rate
𝜂, and stopping criterion.

Output: Optimized weights for the training examples.
1: Initialize the population with 𝑁 weight vectors
𝑤𝑖 = (𝑤𝑖,1, 𝑤𝑖,2, ..., 𝑤𝑖,𝑚) with random values between 0 and 1.

2: Evaluate the objective function 𝐽 (𝑤𝑖) for each weight vector
𝑤𝑖.

3: Set the iteration counter 𝑡 = 0.
4: while the stopping criterion is not met do

a: Generate trial vectors 𝑣𝑖 for each weight vector 𝑤𝑖 using
the formula 𝑣𝑖 = 𝑤𝑟1 + 𝐹𝑖 ⋅ (𝑤𝑟2 −𝑤𝑟3 ), where 𝑟1, 𝑟2, 𝑟3 are
randomly selected indices from the population, and 𝐹𝑖 is
the scaling factor for the weight vector 𝑤𝑖.

b: Apply the projection operation 𝑤𝑖 = min(max(𝑤𝑖, 0), 1) to
each weight vector 𝑤𝑖 to ensure that they stay within the
range of 0 and 1.

c: Evaluate the objective function 𝐽 (𝑣𝑖) for each trial vector
𝑣𝑖.

d: for each weight vector 𝑤𝑖 do
i: Generate a new weight vector 𝑢𝑖 using the formula
𝑢𝑖,𝑗 =

{

𝑣𝑖,𝑗 if 𝑟𝑎𝑛𝑑(0, 1) ≤ 𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑤𝑖,𝑗 otherwise

,

where 𝐶𝑅 is the crossover probability, 𝑗𝑟𝑎𝑛𝑑 is a
randomly selected index, and 𝑟𝑎𝑛𝑑(0, 1) is a random
number between 0 and 1.

ii: Evaluate the objective function 𝐽 (𝑢𝑖) for the new
weight vector 𝑢𝑖.

iii: If 𝐽 (𝑢𝑖) < 𝐽 (𝑤𝑖), set 𝑤𝑖 = 𝑢𝑖.
end
e: Calculate the mean weight vector �̄�(𝑡) for the current
population.

f: Update the adaptation rate 𝜂 and the scaling factor 𝐹𝑖,𝑗
for each weight vector using the formulas 𝜂(𝑡+1) = 𝜂(𝑡) + 𝛥𝜂
and 𝐹 (𝑡+1)

𝑖,𝑗 = 𝐹 (𝑡)
𝑖,𝑗 + 𝛥𝐹𝑖,𝑗 , where the values 𝛥𝜂 and 𝛥𝐹𝑖,𝑗 are

derived from a normal distribution with a mean of 0 and a
standard deviation of 1, and are assigned randomly.

g: Increment the iteration counter 𝑡.
end
5: Return the optimized weights 𝑤𝑖.

The trial vector for each candidate solution 𝑥𝑖 is generated using the
rule shown in Eq. (22).

𝑣𝑖 = 𝑥𝑟1 + 𝐹𝑖 ⋅ (𝑥𝑟2 − 𝑥𝑟3 ) (22)

where 𝑟1, 𝑟2, 𝑟3 are randomly selected indices from the population, and
𝐹𝑖 is the scaling factor for candidate solution 𝑖.

The comparison between the trial solution and the current solution
𝑥𝑖 is carried out according to the rule depicted in Eq. (23).

𝑥(𝑡+1)𝑖 =

{

𝑣𝑖 if 𝑓 (𝑣𝑖) < 𝑓 (𝑥𝑖)
𝑥𝑖 otherwise

(23)

where 𝑡 is number of iterations.
The population is typically initialized with random candidate so-

lutions, and each candidate solution is represented as a vector in the
search space 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑛)
where 𝑛 is the number of dimensions in the search space.

The adaptation rate 𝜂 can be either fixed or adaptively adjusted. In
the latter case, a value of 𝜂 is randomly generated for each candidate
8

Fig. 5. Representation of 𝑓 (𝑥) =
∑𝑛

𝑖 𝑥
2
𝑖 ∕𝑛.

olution in each iteration. One popular strategy for adaptive scaling is
o use the update rule shown in Eq. (24).
(𝑡+1) = 𝜂(𝑡) + 𝛥𝜂 (24)

here 𝜂 is the adaptation rate, and 𝛥𝜂 is a random perturbation.
Let 𝑓 (𝑥) = ∑𝑛

𝑖 𝑥
2
𝑖 ∕𝑛, for n = 32 dimensions. 𝑓 (𝑥) = ∑𝑛

𝑖 𝑥
2
𝑖 ∕𝑛 2D view

is shown in Fig. 5.

3.8. Proposed method-II: Self-Adaptive Differential Evolution Optimization
to optimize weights of a class in weighted class training

In the proposed method-II, we assigned a separate weightage for
each class during weighted class training, with a higher weight given to
the minority class and a lower weight given to the majority class. To op-
timize these weights, we employed the Self-Adaptive Differential Evo-
lution Optimization algorithm, which takes input parameters including
a training dataset, loss function, machine learning model, population
size, maximum number of iterations, scaling factor, adaptation rate,
and stopping criterion.

The algorithm works by generating a population of weight vectors
and iteratively creating new candidate solutions through mutation and
recombination. At each iteration, trial vectors are created by combining
different weight vectors from the population using a scaling factor
and crossover probability, and the objective function is evaluated for
each trial vector. The best trial vectors are then selected to replace the
original weight vectors in the population.

To adapt the algorithm over time, a self-adaptive mechanism is in-
cluded to adjust the scaling factor and adaptation rate of the population
based on the mean weight vector and random values. The goal of the
algorithm is to optimize the weights of a class in weighted class training
by iteratively adjusting the weight vector population to minimize the
loss function for the given machine learning model.

We start with the objective function that we want to optimize,
which is typically the loss function of a machine learning model. In
the case of weighted class training, we want to minimize the objective
function shown in Eq. (25).

𝐽 (𝜃) =
𝑚
∑

𝑖=1
𝑤𝑖𝑙(𝑦(𝑖), 𝑓 (𝑥(𝑖), 𝜃)) (25)

where 𝜃 are the parameters of the machine learning model, 𝑚 is the
number of training examples, 𝑥(𝑖) and 𝑦(𝑖) are the input and output of
the 𝑖th training example, respectively, 𝑓 (𝑥(𝑖), 𝜃) is the predicted output
of the model for the 𝑖th training example, 𝑙 is the loss function, and 𝑤𝑖
is the weight for the 𝑖th training example.

We can use the Self-Adaptive Differential Evolution Algorithm to
optimize the weights 𝑤 of the training examples. We represent the
𝑖
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Fig. 6. Graphical abstract of the proposed self-adaptive DEO for weighted class training.
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weights as a vector in the search space 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑚). The
bjective function becomes as shown in Eq. (26).

(𝑤) =
𝑚
∑

𝑖=1
𝑤𝑖𝑙(𝑦(𝑖), 𝑓 (𝑥(𝑖), 𝜃)) (26)

The Self-Adaptive Differential Evolution Algorithm updates the
eights using the rule shown in Eq. (27).
(𝑡+1)
𝑖 = 𝑤(𝑡)

𝑖 + 𝜂 ⋅ (�̄�(𝑡) −𝑤(𝑡)
𝑖 ) (27)

here 𝑤𝑖 is the weight for the 𝑖th training example, �̄�(𝑡) is the mean
eight for the current population, and 𝜂 is a scaling factor for the
daptation rate.

The trial vector for the weight vector 𝑤 is generated using the rule
hown in Eq. (28).

𝑖 = 𝑤𝑟1 + 𝐹𝑖 ⋅ (𝑤𝑟2 −𝑤𝑟3 ) (28)

here 𝑟1, 𝑟2, 𝑟3 are randomly selected indices from the population, and
𝑖 is the scaling factor for the weight vector 𝑤𝑖.

The trial solution is then compared with the current solution 𝑤𝑖
sing the rule shown in Eq. (29).

(𝑡+1)
𝑖 =

{

𝑣𝑖 if 𝐽 (𝑣𝑖) < 𝐽 (𝑤𝑖)
𝑤𝑖 otherwise

(29)

here 𝑡 is the iteration number.
The population is typically initialized with random weight vectors,

nd each weight vector is represented as a vector in the search space
𝑖 = (𝑤𝑖,1, 𝑤𝑖,2,… , 𝑤𝑖,𝑚)
here 𝑚 is the number of training examples.

The adaptation rate 𝜂 and the scaling factor 𝐹𝑖 can be either fixed or
daptively adjusted. In the latter case, a value of 𝜂 and 𝐹𝑖 is randomly
enerated for each weight vector in each iteration. One popular strategy
or adaptive scaling is to use the update rule shown in Eqs. (30) and
31) respectively.
(𝑡+1) = 𝜂(𝑡) + 𝛥𝜂 (30)

(𝑡+1)
𝑖,𝑗 = 𝐹 (𝑡)

𝑖,𝑗 + 𝛥𝐹𝑖,𝑗 (31)

The adaptation rate, denoted by 𝜂, is involved in the calculation
long with two random values: 𝛥𝜂 and 𝛥𝐹𝑖,𝑗 . These values are drawn

from a normal distribution with a mean of 0 and a standard deviation
of 1.
9

The weights 𝑤𝑖 are typically constrained to be between 0 and 1,
hich can be enforced using a projection operation shown in Eq. (32).

𝑖 = min(max(𝑤𝑖, 0), 1) (32)

The Self-Adaptive Differential Evolution Algorithm is designed to
repeatedly generate and select trial solutions until a predetermined
stopping criterion is met, which may include a maximum number of
iterations or a minimum change in the objective function. Upon con-
ducting this iterative process for a total of 1000 times, the researchers
obtained the most optimal weights for their dataset and subsequently
trained their model using these weights. This approach is depicted in a
Fig. 6 and its training procedure is outlined in detail in Algorithm 3.

In this algorithm, 𝐶𝑅 is typically set to a value between 0.1 and 0.9,
and 𝑗𝑟𝑎𝑛𝑑 is randomly selected from the indices of the weight vector
𝑤𝑖. The adaptation rate 𝜂 and the scaling factor 𝐹𝑖 are updated for
each iteration using the formulas above, which allows the algorithm
to adaptively adjust the exploration–exploitation balance based on the
current population.

The projection operation is used to ensure that the weight vectors
stay within the range of 0 and 1, which is important for weighted class
training, where the weights represent the importance of each class.
The objective function 𝐽 (𝑤𝑖) evaluates the performance of the machine
learning model with the given weights on the training data, and can be
defined as the loss function 𝑙(𝑦, 𝑓 (𝑥, 𝜃)) weighted by the weight vector
𝑤𝑖.

4. Experimental results and analysis

4.1. Dataset description : SIIM-ISIC 2020

The dataset employed in this study is the official dataset of the
SIIM-ISIC Melanoma Classification Challenge, known as the ‘‘ISIC 2020
Challenge Dataset’’ (Rotemberg et al., 2021). This dataset was explicitly
curated for the 2020 Summer Kaggle SIIM-ISIC Melanoma Classifica-
tion Challenge and encompassed 33,126 dermoscopic training images
depicting distinct benign and malignant skin lesions from approxi-
mately 2000 patients. The training set includes ground truth labels
for all 33,126 images, whereas the test data lack such information.
Consequently, our analysis focused exclusively on the training data.

The dataset used in this study comprises 32,542 images of be-
nign lesions and 584 images of malignant melanomas. The malignant
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diagnoses were validated through histopathological analysis, while
the benign diagnoses were established based on expert evaluation,
long-term monitoring, or histopathology. To ensure the accuracy of
the ground truth labels for all malignant lesions, a retrospective as-
sessment of histopathology reports was conducted, further supported
by a dermoscopy specialist for diagnostic plausibility. Suspect cases
were carefully re-examined in comparison to histopathology reports
to uphold label accuracy. It is worth noting that both melanomas in
situ and invasive melanoma were classified as melanoma, while other
qualified images, including highly dysplastic nevi, were categorized as
benign (Lott et al., 2016; Piepkorn et al., 2014).

Within the ISIC 2020 dataset, approximately 79.2% of the patients
did not present melanoma, whereas about 20.8% exhibited at least
one case of melanoma, averaging 16 lesions per patient. The dataset
comprised 33,126 dermoscopic images, of which only 584 (1.8%)
were histopathologically confirmed as melanomas, distinct from benign
melanoma mimickers. The training images had an average pixel count
of 12,743,090, ranging from 307,200 to 24,000,000 pixels. The dataset
consists of two distinct classes: malignant and benign. For our study, we
utilized a dataset consisting of 32,542 images of benign lesions and 584
images of malignant melanomas. Consequently, the imbalanced ratio of
our dataset is approximately 55.7:1, accurately reflecting the real-world
prevalence of melanoma cases. The detailed data description is shown
in Table 5.

4.2. Experimental settings

The present investigation utilized the Tensorflow framework for
coding implementation, and the Models were trained on a worksta-
tion equipped with 12th Gen Intel(R) Core(TM) i7-1265U processor
and Nvidia RTX 3090 GPU. In order to ensure accurate classification
accuracy during the training, validation, and testing phases, all models
were trained for a duration of 200–500 epochs.

4.3. Results

The outcomes of the proposed methodology for melanoma detection
are discussed and assessed in the following section. Six different DCNN
classifiers were used in all of the experiments. The first section explored
and assessed various experimental methods, including undersampling
and oversampling. Next, the proposed techniques’ results are discussed
in the following section. The authors have used the proposed approach
in various ways, including one that uses the usual loss function and an-
other that alters the loss function. The subsequent sections thoroughly
detail and explain each experiment.

4.3.1. Traditional class imbalance approaches
The primary and essential step in developing a deep learning model

involves the specification of its architecture. For our investigation,
we opted to utilize pre-existing networks to extract prominent fea-
tures from histopathological images, which had previously undergone
training on an extensive ImageNet dataset. This technique significantly
reduces the computational power required to adjust weights to fit our
ISIC 2020 dataset. To extract deep features, we utilized six DCNN mod-
els: VGG16, InceptionV3, Xception, InceptionResNetV2, ResNet152V2,
and DenseNet201. To enhance the efficiency of our deep convolutional
neural network (DCNN) models, the authors used the different hyperpa-
rameters as shown in Table 4. Moreover, early stopping callbacks were
incorporated to save the best weights when a monitored parameter
stopped improving.

To mitigate class inequality, we have adopted several strategies,
with random undersampling being the first. As shown in Table 6,
ResNet152V2 outperforms other pre-trained networks in experiments,
with a testing accuracy of 82.26%. However, excessive information loss
may lead to a lower overall accuracy. In an undersampling approach,
the majority class discards most of the data, resulting in the loss of most
10
Table 4
Hyperparameters set for the model training.

Hyperparameters Values

1st momentum decay rate (𝛽1) 0.9
2nd momentum decay rate (𝛽2) 0.999
Epsilon (𝜖) 1e−7
Starting learning rate (𝛼) 0.001
Factor 0.1
Patience 10
Total epochs 250–300
Optimizer Adam
Dropout value 0.5
Batch size 32

Table 5
Dataset description.

Dataset name ISIC 2020 challenge dataset

Total number of images 33,126
Number of patients Approximately 2000
Classes Malignant, Benign
Number of images (Benign) 32,542
Number of images (Malignant) 584
Imbalanced ratio (Benign to malignant) Approximately 55.7:1
Percentage of patients without melanoma 79.2%
Percentage of patients with melanoma 20.8%
Average lesions per patient with melanoma 16
Histopathologically confirmed melanomas 584 (1.8% of the dataset)
Average image pixel count 12,743,090 pixels
Minimum image pixel count 307,200 pixels
Maximum image pixel count 24,000,000 pixels

features from the benign class. As a result, the model has difficulty
discriminating the malignant class from the benign class due to the
insufficient features in the training set.

Conversely, random oversampling yields significantly improved re-
sults, as demonstrated in Table 7. The DenseNet201 classifier with the
highest testing accuracy of 97.43% performs the best. In this scenario,
oversampling is a much better approach than undersampling since no
features are discarded. However, augmenting the minority class by
around 50–60 times may lead to overfitting, whereby the model views
the same data more frequently. Thus, the likelihood of this model
failing in a real-world scenario is considerably higher. In light of this,
our research proposes two approaches to handle class imbalance, which
are expounded on in the subsequent section.

4.3.2. Proposed approach
The authors proposed two approaches to address the issue class im-

balance in the skewed dataset. The first approach involves partitioning
the dataset into eight folds and training eight base classifiers, using
the Kemeny–Young method based majority voting. Each base classifier
learns to distinguish the characteristics of one-eighth of the benign
from the malignant classes, and each casts a vote when presented with
test data. During testing, each base learner casts a vote, and the result
with the most votes is considered. This approach subdivides the work
into eight smaller tasks, allowing each model to learn and discriminate
from the malignant class using just 1/8th of the necessary features. The
accuracy on the majority vote increased compared to the prior 8-fold
accuracy obtained as per the results in Table 8. The loss and accuracy
curve for the training procedure of each fold of the VGG16 model is
shown in Figs. 8 and 9, respectively.

The second proposed approach involves weighted class training
with Self-Adaptive Differential Evolution Optimization. The authors
used a meta-heuristic-based approach to identify the optimum weights
using the Self-Adaptive differential evolution method as a minimiza-
tion problem while monitoring the loss value. The optimized weights
obtained after running the algorithm 1000 times are shown in Table 9.
The authors also compared the optimized weights with the standard

weights calculation method pre-defined in the sklearn library. The
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Fig. 7. Loss and accuracy curve for training procedure of optimized weighted class training based ensemble model.
Table 6
Results obtained with the random undersampling method.

Classifiers Training error (%) Validation error (%) Testing error (%) Sensitivity (%) Specificity (%) F1-score (%)

VGG16 13.72 18.62 18.09 34.78 93.99 43.96
Xception 0.05 22.41 19.69 31.30 92.87 39.34
InceptionV3 0.35 18.62 19.33 30.43 93.54 39.11
ResNet152V2 0.05 16.90 17.74 38.26 93.54 46.81
Inception ResNetV2 0.25 23.10 20.22 27.83 93.10 35.96
DenseNet201 0.45 20.69 19.69 41.74 90.20 46.38
Table 7
Results obtained with the random oversampling method.

Classifiers Training error (%) Validation error (%) Testing error (%) Sensitivity (%) Specificity (%) F1-score (%)

VGG16 2.51 4.08 4.29 13.79 97.17 10.13
Xception 0.84 3.02 3.02 15.52 98.43 15.25
InceptionV3 6.10 5.71 5.80 22.41 95.48 11.93
ResNet152V2 0.84 3.89 3.59 13.79 97.88 11.85
Inception ResNetV2 5.86 5.16 4.96 20.69 96.37 12.77
DenseNet201 0.68 2.66 2.57 6.90 99.05 8.60
Table 8
Results obtained with the Kemeny–Young based majority voting method on each fold and the final fold.

Classifier Fold 1
Error (%)

Fold 2
Error (%)

Fold 3
Error (%)

Fold 4
Error (%)

Fold 5
Error (%)

Fold 6
Error (%)

Fold 7
Error (%)

Fold 8
Error (%)

Majority
Voting Error (%)

VGG16 10.70 5.89 10.46 13.12 8.92 5.35 13.72 6.41 2.44
Xception 15.69 12.58 10.04 12.64 16.90 15.90 14.03 16.26 11.79
InceptionV3 18.65 15.30 15.18 19.98 14.30 16.63 16.26 13.97 9.94
ResNet152V2 12.88 15.36 12.52 14.60 14.42 16.23 12.58 14.12 7.64
Inception
ResNetV2

19.29 15.87 19.44 19.41 17.90 14.48 17.59 18.74 8.27

DenseNet201 11.55 10.46 9.28 10.31 10.01 9.76 11.46 9.25 3.77
Table 9
Optimized weights with Self-Adaptive Differential Evolution Optimization.

Method Benign : 𝑤1 Malignant : 𝑤2

Random weights 1 1
Traditional method 0.0179 1
Optimized weights 0.0729 1

model was trained using the optimized weights using a process known
as cost-sensitive learning, which involves giving weights to each class.
The loss and accuracy curves for the training procedure of all six DCNN
classifiers are shown in Fig. 7. Table 10 contrasts the outcomes of
five alternative strategies, including the proposed approach with and
without weights, and with and without altering the loss function. These
experiments were conducted to examine the robustness of the proposed
approach.
11
4.4. Comparison with the state-of-the-art

The International Skin Imaging Collaboration (ISIC) releases a
yearly dataset for melanoma detection. The challenge named SIIM-ISIC
is conducted every year. Various articles that we evaluated employed
different datasets. The ISIC 2020 dataset, the most recent dataset made
available by the ISIC, has been considered in this research. To address
the class imbalance issue, we choose to use the highly unbalanced
ISIC 2020 dataset as the main focus of our research. Table 11 demon-
strates that our two proposed methods surpassed several state-of-the-art
models/methodologies proposed in earlier studies.

As evidenced by the findings presented in Table 11, a significant
number of the proposed methodologies employ Oversampling-based
approaches or Data Augmentation techniques to address the issue of
imbalanced classes by increasing the representation of the minority
class. While this approach is generally regarded as effective, it is
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Table 10
Results obtained with the Weighted class training method.

Method Metric VGG16 Xception InceptionV3 ResNet152V2 InceptionResNetV2 DenseNet201

Normal

Error rate (%) 1.78 1.75 1.75 1.75 1.75 1.75
Sensitivity (%) 0 0 0 0 0 0
Specificity (%) 99.97 100 100 100 100 100
F1-score (%) 0 0 0 0 0 0

Normal + Focal loss

Error rate (%) 1.81 1.81 1.78 1.75 1.75 1.69
Sensitivity (%) 0 0 0 1.72 0 3.45
Specificity (%) 99.94 99.97 99.97 99.97 100 100
F1-score (%) 0 0 0 3.33 0 6.67

Weighted class training

Error rate (%) 21.20 14.73 16.06 5.68 19.66 11.35
Sensitivity (%) 68.97 62.07 63.79 39.66 72.41 70.69
Specificity (%) 78.98 85.68 84.30 95.30 80.49 88.97
F1-score (%) 10.23 12.86 12.21 19.66 11.43 17.90

Focal loss + Weighted class training

Error rate (%) 15.16 8.70 10.02 2.66 13.62 5.31
Sensitivity (%) 68.97 62.07 63.79 39.66 72.41 70.69
Specificity (%) 85.13 91.83 90.44 98.37 86.63 95.11
F1-score (%) 13.75 20 18.23 34.33 15.70 31.78

Focal loss + Optimized weighted class training

Error rate (%) 8.82 2.36 3.99 2.36 7.28 1.99
Sensitivity (%) 86.21 79.31 63.79 56.90 89.66 87.93
Specificity (%) 91.27 97.97 96.59 98.37 92.78 98.19
F1-score (%) 25.51 54.12 35.92 45.83 30.14 60.71
Table 11
Comparitive study between proposed methods and the state-of-art.

Paper Method used Dataset Classification error (%)

Kaur et al. (2022) DCNN using random oversampling ISIC 2016 18.59
Oliveira et al. (2019) Correlation-based feature selection method ISIC 2016 7.70
Kaur et al. (2022) DCNN using random oversampling ISIC 2017 11.77
Li and Shen (2018) Lesion Indexing Network and Lesion Feature Network ISIC 2017 8.80
Adegun and Viriri (2019) Encoder Decoder Network ISIC 2017 5.01
Kassem et al. (2020) Transfer Learning using pre-trained GoogleNet ISIC 2019 5.08
Yu et al. (2016) Deep Residual Networks ISIC 2020 15.60
Pham et al. (2018) Deep CNN and Data Augmentation ISIC 2020 12.80
Kaur et al. (2022) DCNN using random oversampling ISIC 2020 9.58
Al-Masni et al. (2018) Deep full resolution convolutional networks ISIC 2020 5.97
Hosny et al. (2019) Transfer learning and pre-trained Deep neural network ISIC 2020 4.09

İlkin et al. (2021) Bacterial colony optimization based SVM ISIC 2020 2.50
Proposed method Kemeny–Young rule based Majority Voting ISIC 2020 2.46
Proposed method Self Adaptive Differential Evolution Optimization

based cost-sensitive learning
ISIC 2020 1.99
Fig. 8. Loss curve for training procedure of each fold of Kemeny–Young based majority voting ensemble model.
12
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Fig. 9. Accuracy curve for training procedure of each fold of Kemeny–Young based majority voting ensemble model.
mportant to note that these models often exhibit overfitting tendencies
hen applied to test data, resulting in suboptimal predictions for the
inority class, which ultimately undermines our primary objective.

. Discussion and future directions

In this section, we first discuss the flexibility of the proposed meth-
ds, and the essential advantages of proposed methods in solving class
mbalance problems. Finally, limitations of the proposed work and
uture directions are considered.

.1. Flexibility of the proposed methods

The strength of the proposed methods for addressing class im-
alance in melanoma detection lies in their inherent flexibility and
daptability to diverse scenarios and datasets. Firstly, the method based
n the Kemeny–Young rule for rank aggregation takes into consider-
tion the unique characteristics of each class and aims to minimize
ias between them, irrespective of the specific data distribution. This
lexibility renders the method suitable for datasets exhibiting varying
egrees of class imbalance, ranging from mild to severe. Its ability to
dapt to different data distributions ensures its applicability in diverse
elanoma detection scenarios.

Likewise, the cost-sensitive learning approach employing Self-
daptive Differential Evolution Optimization offers flexibility in assign-

ng optimal weights to each class. In contrast to traditional methods
hat rely on predefined criteria for weight assignment, this approach dy-
amically determines the weights based on the inherent characteristics
f the dataset under consideration. This adaptability allows the method
o adjust to the specific challenges posed by imbalanced data, thereby
nabling effective handling of varying degrees of class imbalance and
onsequent improvement in classification performance.

Moreover, the proposed methods can be seamlessly integrated into
xisting deep learning frameworks and workflows. Deep learning has
merged as a potent tool in the domain of biomedical image analysis,
nd the proposed methods seamlessly align with this paradigm. The
ompatibility of these methods with deep learning architectures, such
s CNNs, facilitates their smooth integration into established pipelines
nd enhances their adoption by researchers and practitioners in the
ield.

It is important to note that the proposed methods are not limited
olely to melanoma detection but can also be adapted and extended
o address class imbalance in other biomedical imaging applications.

hile skin cancer classification exemplifies a scenario where imbal-
nced class distributions present challenges, numerous other medical
maging tasks, such as the detection of rare diseases or abnormalities,
ncounter similar issues. The proposed methods serve as a foundation
13
for addressing class imbalance across diverse medical imaging do-
mains. By adapting these methods to different datasets and application
contexts, researchers can effectively tackle class imbalance and en-
hance the accuracy and reliability of various computer-aided diagnosis
systems.

5.2. Limitations and future directions

Although the proposed method for addressing class imbalance in
melanoma detection has demonstrated promising results and outper-
formed state-of-the-art approaches, it is important to acknowledge its
limitations and identify potential avenues for future research.

One limitation of the current approach pertains to its reliance on
the Kemeny–Young rule for rank aggregation. While this rule has
proven effective in reducing bias between classes and improving clas-
sification accuracy, its suitability may vary across different datasets
or classification tasks. Another aspect to consider is the computa-
tional complexity associated with the proposed method, particularly
concerning the utilization of the Self-Adaptive Differential Evolution
Optimization algorithm for determining optimal weights. While this
algorithm has exhibited promising results in identifying optimal class
weights, it may present computational challenges when applied to
larger datasets or real-time applications.

In terms of future directions, one avenue of exploration involves
the integration of multi-modal data for melanoma detection. The com-
bination of information from multiple imaging modalities, such as
dermoscopy, clinical images, and histopathology, has the potential to
enhance the accuracy and reliability of melanoma diagnosis. Inves-
tigating the fusion of different data sources and developing robust
algorithms capable of handling heterogeneous data (Zhang et al., 2022)
can further augment the performance of melanoma detection systems.
Moreover, the proposed method can be extended to address other chal-
lenges in dermatological image analysis beyond melanoma detection.
Exploring the application of the proposed method to other skin disease
classification tasks, such as detecting non-melanoma skin cancers or
differentiating various dermatological conditions, would broaden the
utility and impact of the research.

6. Conclusion

The application of deep learning in biomedical imaging remains an
active area of research, with the challenge of addressing the problem of
imbalanced class distributions receiving significant attention. This issue
is particularly evident in the context of identifying diseases such as
COVID-19 during the recent pandemic, where datasets comprising chest
X-ray or CT scans initially exhibit severe class imbalance. Similarly, in
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our study, the Melanoma dataset (ISIC 2020) also presented a highly
imbalanced class distribution.

In response to these challenges, this manuscript proposes a novel
method to effectively handle class imbalance. The authors extensively
explore and compare alternative deep learning techniques employed by
researchers to address this issue. The first proposed approach involves
the application of a Kemeny–Young-based majority voting ensemble
model, where the dataset is partitioned into chunks and the majority
vote determines the final prediction. This method, referred to as Pro-
posed Method 1, achieves an classification error of 2.44%. Additionally,
the authors propose a weighted class training approach as the second
method. This approach utilizes the Self-Adaptive Differential Evolution
algorithm, a meta-heuristic-based optimization technique, to determine
optimal weights for the dataset. The second proposed method achieves
an impressive overall classification error of 1.99%.

The findings of this research provide valuable insights for future
scholars in their endeavors to tackle class imbalance and explore alter-
native approaches. Moreover, the proposed methodologies have wider
implications beyond the specific context of this study, particularly in
the field of biomedical imaging. The proposed method can greatly assist
in distinguishing between benign and malignant melanoma images. The
authors anticipate that the effective detection of melanoma enabled by
this research will have practical benefits for hospitals and physicians,
leading to improved diagnostic capabilities through the integration
of these methodologies into implantable devices and graphical user
interfaces (GUI).

CRediT authorship contribution statement

Gaurav Srivastava: Conceptualization, Formal analysis, Methodol-
ogy, Software, Code implementations, Writing – original draft, Writing
– review & editing, Validation, Investigation. Nitesh Pradhan: Valida-
ion, Resources, Investigation, Writing – review & editing, Supervision,
esearch administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The data utilized in this study can be found at the following publicly
vailable URL: https://challenge2020.isic-archive.com/.

ppendix A

Abbreviation Meaning
AI Artificial Intelligence
CAD Computer-Aided Diagnosis
DL Deep Learning
ML Machine Learning
DCNN Deep Convolutional Neural Network
CNN Convolutional Neural Network
SIIM Society for Imaging Informatics in Medicine
ISIC International Skin Imaging Collaboration
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ELM Extreme Learning Machine
W-ELM Weighted Extreme Learning Machines
FCRN Fully Convolutional Residual Networks
LIN Lesion Indexing Network
LFN Lesion Feature Network
LICU Lesion Indexing Calculation Unit
BES Bald Eagle Search
RBF Radial Basis Function
SVM Support Vector Machine
HHO Harris Hawk Optimization
MLP Multi-layer Perceptron Network
SA-DEO Self-Adaptive Differential Evolution Optimization
SMOTE Synthetic Minority Oversampling Technique

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.engappai.2023.106738.

References

Adegun, A.A., Viriri, S., 2019. Deep learning-based system for automatic melanoma
detection. IEEE Access 8, 7160–7172.

Adepu, A.K., Sahayam, S., Jayaraman, U., Arramraju, R., 2023. Melanoma classification
from dermatoscopy images using knowledge distillation for highly imbalanced data.
Comput. Biol. Med. 154, 106571.

Ahmed, M.T., Hussain, M.M., Chennam, K.K., 2017. Designing a consensus ranking
algorithm for same domain entities. In: 2017 2nd International Conference on
Communication and Electronics Systems (ICCES). IEEE, pp. 12–16.

Al-Masni, M.A., Al-Antari, M.A., Choi, M.-T., Han, S.-M., Kim, T.-S., 2018. Skin
lesion segmentation in dermoscopy images via deep full resolution convolutional
networks. Comput. Methods Programs Biomed. 162, 221–231.

American Cancer Society, 2022. Melanoma skin cancer, https://www.cancer.org/
cancer/melanoma-skin-cancer.html.

Aspinwall, L.G., Leaf, S.L., Dola, E.R., Kohlmann, W., Leachman, S.A., 2008.
CDKN2A/p16 genetic test reporting improves early detection intentions and prac-
tices in high-risk melanoma families. Cancer Epidemiol. Biomarkers Prevent. 17
(6), 1510–1519.

Bansal, P., Vanjani, A., Mehta, A., Kavitha, J., Kumar, S., 2022. Improving the
classification accuracy of melanoma detection by performing feature selection using
binary Harris hawks optimization algorithm. Soft Comput. 26 (17), 8163–8181.

Bozorg-Haddad, O., Solgi, M., Loáiciga, H.A., 2017. Meta-Heuristic and Evolutionary
Algorithms for Engineering Optimization. John Wiley & Sons.

Brest, J., Zumer, V., Maucec, M.S., 2006. Self-adaptive differential evolution algorithm
in constrained real-parameter optimization. In: 2006 IEEE International Conference
on Evolutionary Computation. IEEE, pp. 215–222.

Chakraborty, A., Ghosh, K.K., De, R., Cuevas, E., Sarkar, R., 2021. Learning automata
based particle swarm optimization for solving class imbalance problem. Appl. Soft
Comput. 113, 107959.

Chamseddine, E., Mansouri, N., Soui, M., Abed, M., 2022. Handling class imbalance in
COVID-19 chest X-ray images classification: Using SMOTE and weighted loss. Appl.
Soft Comput. 129, 109588.

Chen, Y., Wang, Y., Gu, Y., He, X., Ghamisi, P., Jia, X., 2019. Deep learning ensemble
for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 12 (6), 1882–1897.

Chopard, B., Tomassini, M., 2018. Particle swarm optimization. In: An Introduction To
Metaheuristics for Optimization. Springer, pp. 97–102.

Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W.,
Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al., 2018. Skin lesion analysis
toward melanoma detection: A challenge at the 2017 international symposium on
biomedical imaging (isbi), hosted by the international skin imaging collaboration
(isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018). IEEE, pp. 168–172.

Codella, N.C., Nguyen, Q.-B., Pankanti, S., Gutman, D.A., Helba, B., Halpern, A.C.,
Smith, J.R., 2017. Deep learning ensembles for melanoma recognition in
dermoscopy images. IBM J. Res. Dev. 61 (4/5), 5–51.

Dong, Q., Gong, S., Zhu, X., 2018. Imbalanced deep learning by minority class
incremental rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41 (6), 1367–1381.

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S., 2017.
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542 (7639), 115–118.

Fargnoli, M.C., Kostaki, D., Piccioni, A., Micantonio, T., Peris, K., 2012. Dermoscopy
in the diagnosis and management of non-melanoma skin cancers. Eur. J. Dermatol.
22 (4), 456–463.

Hosny, K.M., Kassem, M.A., Foaud, M.M., 2019. Classification of skin lesions using
transfer learning and augmentation with Alex-net. PLoS One 14 (5), e0217293.

https://challenge2020.isic-archive.com/
https://doi.org/10.1016/j.engappai.2023.106738
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb2
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb4
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb4
https://www.cancer.org/cancer/melanoma-skin-cancer.html
https://www.cancer.org/cancer/melanoma-skin-cancer.html
https://www.cancer.org/cancer/melanoma-skin-cancer.html
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb6
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb7
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb8
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb9
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb10
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb11
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb12
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb14
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb15
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb17
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb18
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb19
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb19
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb19


G. Srivastava and N. Pradhan Engineering Applications of Artificial Intelligence 125 (2023) 106738
Huang, G.-B., Wang, D.H., Lan, Y., 2011. Extreme learning machines: a survey. Int. J.
Mach. Learn. Cybern. 2, 107–122.

İlkin, S., Gençtürk, T.H., Gülağız, F.K., Özcan, H., Altuncu, M.A., Şahin, S., 2021. hyb-
SVM: Bacterial colony optimization algorithm based SVM for malignant melanoma
detection. Eng. Sci. Technol., Int. J. 24 (5), 1059–1071.

Jain, S., Pise, N., et al., 2015. Computer aided melanoma skin cancer detection using
image processing. Procedia Comput. Sci. 48, 735–740.

Johnson, J.M., Khoshgoftaar, T.M., 2019. Survey on deep learning with class imbalance.
J. Big Data 6 (1), 1–54.

Kassem, M.A., Hosny, K.M., Fouad, M.M., 2020. Skin lesions classification into eight
classes for ISIC 2019 using deep convolutional neural network and transfer learning.
IEEE Access 8, 114822–114832.

Kato, J., Horimoto, K., Sato, S., Minowa, T., Uhara, H., 2019. Dermoscopy of melanoma
and non-melanoma skin cancers. Front. Med. 6, 180.

Kaur, R., GholamHosseini, H., Sinha, R., Lindén, M., 2022. Melanoma classification
using a novel deep convolutional neural network with dermoscopic images. Sensors
22 (3), 1134.

Khan, M.S., Alam, K.N., Dhruba, A.R., Zunair, H., Mohammed, N., 2022. Knowledge
distillation approach towards melanoma detection. Comput. Biol. Med. 105581.

Knackstedt, T., Knackstedt, R.W., Couto, R., Gastman, B., 2018. Malignant melanoma:
diagnostic and management update. Plast. Reconstr. Surg. 142 (2), 202e–216e.

Lallas, A., Argenziano, G., Zendri, E., Moscarella, E., Longo, C., Grenzi, L., Pellacani, G.,
Zalaudek, I., 2013. Update on non-melanoma skin cancer and the value of
dermoscopy in its diagnosis and treatment monitoring. Expert Rev. Anticancer Ther.
13 (5), 541–558.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Levin, J., Nalebuff, B., 1995. An introduction to vote-counting schemes. J. Econ.

Perspect. 9 (1), 3–26.
Li, D.-C., Liu, C.-W., Hu, S.C., 2010. A learning method for the class imbalance problem

with medical data sets. Comput. Biol. Med. 40 (5), 509–518.
Li, Y., Shen, L., 2018. Skin lesion analysis towards melanoma detection using deep

learning network. Sensors 18 (2), 556.
Li, Y., Zhang, J., Zhang, S., Xiao, W., Zhang, Z., 2022. Multi-objective optimization-

based adaptive class-specific cost extreme learning machine for imbalanced
classification. Neurocomputing 496, 107–120.

Ling, C.X., Sheng, V.S., 2008. Cost-sensitive learning and the class imbalance problem.
Encycl. Mach. Learn. 2011, 231–235.

Lott, J.P., Elmore, J.G., Zhao, G.A., Knezevich, S.R., Frederick, P.D., Reisch, L.M.,
Chu, E.Y., Cook, M.G., Duncan, L.M., Elenitsas, R., et al., 2016. Evaluation of the
melanocytic pathology assessment tool and hierarchy for diagnosis (MPATH-dx)
classification scheme for diagnosis of cutaneous melanocytic neoplasms: Results
from the international melanoma pathology study group. J. Am. Acad. Dermatol.
75 (2), 356–363.

Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C.,
Gibbs, M.S., Keedwell, E., Marchi, A., et al., 2014. Evolutionary algorithms and
other metaheuristics in water resources: Current status, research challenges and
future directions. Environ. Model. Softw. 62, 271–299.

Maier, H.R., Razavi, S., Kapelan, Z., Matott, L.S., Kasprzyk, J., Tolson, B.A., 2019.
Introductory overview: Optimization using evolutionary algorithms and other
metaheuristics. Environ. Model. Softw. 114, 195–213.

Mayo Clinic, 2022. Melanoma, https://www.mayoclinic.org/diseases-conditions/
melanoma/symptoms-causes/syc-20374884.

NHS, 2022. Skin cancer melanoma, https://www.nhs.uk/conditions/melanoma-skin-
cancer.

Nikolouzakis, T.K., Falzone, L., Lasithiotakis, K., Krüger-Krasagakis, S., Kalogeraki, A.,
Sifaki, M., Spandidos, D.A., Chrysos, E., Tsatsakis, A., Tsiaoussis, J., 2020. Current
and future trends in molecular biomarkers for diagnostic, prognostic, and predictive
purposes in non-melanoma skin cancer. J. Clin. Med. 9 (9), 2868.

Oh, Y., Park, S., Ye, J.C., 2020. Deep learning COVID-19 features on CXR using limited
training data sets. IEEE Trans. Med. Imaging 39 (8), 2688–2700.

Oliveira, R.B., Pereira, A.S., Tavares, J.M.R., 2019. Computational diagnosis of skin
lesions from dermoscopic images using combined features. Neural Comput. Appl.
31 (10), 6091–6111.

Omran, M.G., Salman, A., Engelbrecht, A.P., 2005. Self-adaptive differential evolution.
In: Computational Intelligence and Security: International Conference, CIS 2005,
Xi’an, China, December 15-19, 2005, Proceedings Part I. Springer, pp. 192–199.

Pham, T.-C., Luong, C.-M., Visani, M., Hoang, V.-D., 2018. Deep CNN and data
augmentation for skin lesion classification. In: Intelligent Information and Database
Systems: 10th Asian Conference, ACIIDS 2018, Dong Hoi City, Vietnam, March
19-21, 2018, Proceedings, Part II 10. Springer, pp. 573–582.

Piepkorn, M.W., Barnhill, R.L., Elder, D.E., Knezevich, S.R., Carney, P.A., Reisch, L.M.,
Elmore, J.G., 2014. The MPATH-Dx reporting schema for melanocytic proliferations
and melanoma. J. Am. Acad. Dermatol. 70 (1), 131–141.
15
Pradhan, N., Dhaka, V.S., Rani, G., Chaudhary, H., 2020. Transforming view of medical
images using deep learning. Neural Comput. Appl. 32, 15043–15054.

Pradhan, N., Singh, V., Kumar, V., Goel, P., Dhaka, V.S., 2021. Conversion of two
dimensional images into multi-view images of bone using deep learning. Comput.
Methods Biomech. Biomed. Eng.: Imaging Vis. 9 (1), 106–113.

Qin, A.K., Suganthan, P.N., 2005. Self-adaptive differential evolution algorithm for
numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation, Vol.
2. IEEE, pp. 1785–1791.

Rajaram, N., Reichenberg, J.S., Migden, M.R., Nguyen, T.H., Tunnell, J.W., 2010. Pilot
clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.
Lasers Surg. Med. 42 (10), 876–887.

Ren, M., Zeng, W., Yang, B., Urtasun, R., 2018. Learning to reweight examples for
robust deep learning. In: International Conference on Machine Learning. PMLR,
pp. 4334–4343.

Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N.,
Combalia, M., Dusza, S., Guitera, P., Gutman, D., et al., 2021. A patient-centric
dataset of images and metadata for identifying melanomas using clinical context.
Sci. Data 8 (1), 1–8.

Saari, D.G., Merlin, V.R., 2000. A geometric examination of Kemeny’s rule. Soc. Choice
Welf. 17 (3), 403–438.

Saini, M., Susan, S., 2020. Deep transfer with minority data augmentation for
imbalanced breast cancer dataset. Appl. Soft Comput. 97, 106759.

Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., Portilla-Figueras, J., 2014.
The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving
optimization problems. Sci. World J. 2014.

Sánchez-Monedero, J., Pérez-Ortiz, M., Saez, A., Gutiérrez, P.A., Hervás-Martínez, C.,
2018. Partial order label decomposition approaches for melanoma diagnosis. Appl.
Soft Comput. 64, 341–355.

Sayed, G.I., Soliman, M.M., Hassanien, A.E., 2021. A novel melanoma prediction model
for imbalanced data using optimized SqueezeNet by bald eagle search optimization.
Comput. Biol. Med. 136, 104712.

Skin Cancer Foundation, 2022. Melanoma overview, https://www.skincancer.org/skin-
cancer-information/melanoma.

Smaoui, N., Bessassi, S., 2013. A developed system for melanoma diagnosis. Int. J.
Comput. Vis. Signal Process. 3 (1), 10–17.

Srivastava, G., Chauhan, A., Jangid, M., Chaurasia, S., 2022a. CoviXNet: A novel and
efficient deep learning model for detection of COVID-19 using chest X-Ray images.
Biomed. Signal Process. Control 103848.

Srivastava, G., Chauhan, A., Kargeti, N., Pradhan, N., Dhaka, V.S., 2023a. ApneaNet: A
hybrid 1DCNN-LSTM architecture for detection of Obstructive Sleep Apnea using
digitized ECG signals. Biomed. Signal Process. Control 84, 104754.

Srivastava, G., Chauhan, A., Pradhan, N., 2023b. CJT-DEO: Condorcet’s Jury Theorem
and Differential Evolution Optimization based ensemble of deep neural networks for
pulmonary and Colorectal cancer classification. Appl. Soft Comput. 132, 109872.

Srivastava, G., Pradhan, N., Saini, Y., 2022b. Ensemble of Deep Neural Networks
based on Condorcet’s Jury Theorem for screening Covid-19 and Pneumonia from
radiograph images. Comput. Biol. Med. 149, 105979.

Sun, J., Li, J., Fujita, H., 2022. Multi-class imbalanced enterprise credit evaluation based
on asymmetric bagging combined with light gradient boosting machine. Appl. Soft
Comput. 130, 109637.

Tan, T.Y., Zhang, L., Lim, C.P., 2019. Intelligent skin cancer diagnosis using improved
particle swarm optimization and deep learning models. Appl. Soft Comput. 84,
105725.

Wang, Y., Cai, J., Louie, D.C., Wang, Z.J., Lee, T.K., 2021. Incorporating clinical
knowledge with constrained classifier chain into a multimodal deep network for
melanoma detection. Comput. Biol. Med. 137, 104812.

Xiao, W., Zhang, J., Li, Y., Zhang, S., Yang, W., 2017. Class-specific cost regulation
extreme learning machine for imbalanced classification. Neurocomputing 261,
70–82.

Xie, F., Fan, H., Li, Y., Jiang, Z., Meng, R., Bovik, A., 2016. Melanoma classification
on dermoscopy images using a neural network ensemble model. IEEE Trans. Med.
Imaging 36 (3), 849–858.

Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.-A., 2016. Automated melanoma recognition
in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging
36 (4), 994–1004.

Yu, Z., Jiang, F., Zhou, F., He, X., Ni, D., Chen, S., Wang, T., Lei, B., 2020. Convolutional
descriptors aggregation via cross-net for skin lesion recognition. Appl. Soft Comput.
92, 106281.

Zhang, J., Zhao, Y., Shone, F., Li, Z., Frangi, A.F., Xie, S.Q., Zhang, Z.-Q., 2022. Physics-
informed deep learning for musculoskeletal modelling: Predicting muscle forces and
joint kinematics from surface EMG. IEEE Trans. Neural Syst. Rehabil. Eng..

http://refhub.elsevier.com/S0952-1976(23)00922-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb21
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb23
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb23
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb23
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb24
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb27
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb28
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb28
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb28
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb29
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb30
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb31
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb34
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb35
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb36
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb37
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb38
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb38
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-causes/syc-20374884
https://www.nhs.uk/conditions/melanoma-skin-cancer
https://www.nhs.uk/conditions/melanoma-skin-cancer
https://www.nhs.uk/conditions/melanoma-skin-cancer
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb42
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb43
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb44
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb45
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb46
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb47
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb48
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb49
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb50
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb51
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb52
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb53
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb54
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb55
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb56
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb57
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb57
https://www.skincancer.org/skin-cancer-information/melanoma
https://www.skincancer.org/skin-cancer-information/melanoma
https://www.skincancer.org/skin-cancer-information/melanoma
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb59
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb60
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb60
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb60
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb60
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb60
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb61
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb61
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb61
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb61
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb61
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb62
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb62
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb62
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb62
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb62
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb63
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb63
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb63
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb63
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb63
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb64
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb64
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb64
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb64
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb64
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb65
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb65
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb65
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb65
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb65
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb66
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb66
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb66
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb66
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb66
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb67
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb67
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb67
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb67
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb67
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb68
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb68
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb68
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb68
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb68
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb69
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb69
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb69
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb69
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb69
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb70
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb70
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb70
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb70
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb70
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb71
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb71
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb71
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb71
http://refhub.elsevier.com/S0952-1976(23)00922-3/sb71

	Handling imbalanced class in melanoma: Kemeny–Young rule based optimal rank aggregation and Self-Adaptive Differential Evolution Optimization
	Introduction
	Related Work
	Imbalanced Classification Approaches
	Deep Learning Based Approaches for Melanoma Classification
	Metaheuristic Optimization and Feature Selection Based Approaches

	Presented Methodology
	Dataset Preprocessing
	Dataset Division
	8-fold Packets Dataset Division
	Model Training
	Loss Function: alpha-Balanced Focal Loss
	Optimizer: Adam
	Classifier: Softmax
	Learning Rate Schedule : ReduceLROnPlateau

	Kemeny–Young method
	Proposed Method-I: Kemeny–Young rule based majority voting
	Self-Adaptive Differential Evolution Algorithm
	Proposed Method-II: Self-Adaptive Differential Evolution Optimization to optimize weights of a class in weighted class training

	Experimental Results and Analysis
	Dataset Description : SIIM-ISIC 2020
	Experimental Settings
	Results
	Traditional Class Imbalance Approaches
	Proposed Approach

	Comparison with the state-of-the-art

	Discussion and Future Directions
	Flexibility of the Proposed Methods
	Limitations and Future Directions

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A
	Appendix B. Supplementary data
	References


