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a b s t r a c t

Cancer is one of the most dangerous diseases globally, causing adverse effects on human life, with
early detection and treatment planning being crucial for patients. Amongst different malignancies,
Lung and Colorectal cancer cause the first and second most cancer deaths in the world, respectively.
In this study, the authors aim to analyze LC25000 histopathological image dataset for lung and colon
cancer detection. The fundamental goal of the proposed research is to leverage the ensemble learning
approach to improve the classification performance of deep learning models. Many previous studies
have proposed several ensemble methods and weighting schemes. However, none of them optimized
the assigned weights using a meta-heuristic-based approach as per our best knowledge. The authors
have applied Differential Evolution optimization to optimize and find the optimal assigned weights
to the classifiers while training the ensemble model. In addition, a novel approach to ensemble
base learners with majority voting based on Condorcet’s Jury Theorem has also been proposed. This
proposed method has been shown to save a lot of computational efforts by eliminating the training
procedure of meta-learners. Besides this, the authors also demonstrated that Condorcet’s Jury Theorem
holds while ensembling the N number of classifiers in Neural Networks. Our proposed method and
experimental results outperformed compared to the state-of-the-art with the optimized ensemble
model showing an accuracy of 99.78% and Condorcet’s Jury Theorem-based ensemble model 99.88%
on 5-class classification.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Cancer is a life-threatening disease affecting millions of people
early and is the second leading cause of death worldwide [1,2].
n 2020 there were 1.3 million new cases reported in India
lone, causing around 0.8 million deaths [3]. The most common
auses of cancer death in 2020 were Lung cancer(1.8 million)
nd colorectal cancer(0.9 million) [2]. Lung and colon cancer
ombined account for over 20% of the total cancer cases, with
tudies indicating that they may develop synchronously [4,5].
ccording to Kurishima et al. 17 out of 3102 lung cancer patients
ere diagnosed with colon cancer within just one month [6].
hile metastases from lung cancer to the colon are rare, it is
uch more common for colon cancer to spread to the lungs, with

he lungs being the second most common site for metastases of
olorectal cancer [6,7].
These mind-numbing statistics show the immense necessity

or an efficient diagnostic method to detect these cancer cells,
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which will aid in early detection, proper treatment planning for
the patient’s health, and assist in studying preventive measures
for this disease. The use of artificial intelligence for analyzing
biomedical images to detect various diseases has shown great
potential, with performance comparable to and, in some cases,
better than that of medical professionals [8,9]. This has increased
the need to utilize machine learning (ML) and deep learning (DL)
techniques to detect cancerous cells using histopathology images.
Computer Aided Diagnosis of the disease also eases the testing
burden on doctors and hospitals and assists patients with efficient
and reliable detection [10,11].

Recent studies on cancer detection using artificial intelligence
use deep learning techniques such as transfer learning, that is,
pre-trained models or previous state-of-the-art models for fea-
ture extraction on their particular problem dataset [12]. This,
along with popular image processing techniques, has achieved
substantially better results than traditional machine learning al-
gorithms [12,13]. However, applying these deep learning meth-
ods requires enormous amounts of reliable and labeled data that
is hard to get in the medical field [14]. To overcome this issue,
the dataset used for this work [15] is a histopathological image
dataset that consists of 5 classes of lung and colon cancer: 25,000
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mages equally balanced into each class with 5000 images in each.
he availability of such an abundant and evenly balanced mul-
iclass dataset for biomedical imaging is scarce, and this fueled
ur motivation to implement deep learning techniques on this
ataset.
Image Processing techniques are utilized to enhance the input

mages before extracting the features using Convolutional Neural
etwork (CNN) models. These techniques are used to denoise and
mprove the overall quality of input image data, making it easier
or the neural network to analyze the images and drastically im-
roving classifier accuracy. Several Image processing techniques
an be found in the literature, such as the Fast Non-Local Means
NLM) Denoising algorithm, Contrast Limited Adaptive Histogram
qualization (CLAHE), Balance Contrast Enhancement Technique
BCET), and OTSU’s Thresholding for Image Binarization. Applying
hese techniques highlights the features in an image, making it
asier for the model to extract those.
Ensembling learning approaches are commonly used in deep

earning problems to combine the powers of different classifiers
o train an ensemble model that should perform better than
ll of them. Unfortunately, ensembling the base classifiers gives
qual weightage to all of them. There are times when we want
xtremely competent models to contribute more to an ensemble
rediction, and other times when we want less competent models
o contribute less to an ensemble prediction. So, penalizing a less
ccurate model and rewarding a more precise model can lead to
ven better predictions.
Several methods are used to assign weights to the base classi-

ier according to their predicted performance reliability. Search-
ng for optimum weights is an extensive procedure if we perform
random search or use a Grid Search technique. Instead, we can
se a heuristic-based approach to search for optimum weights.
esearchers used many meta-heuristic-based optimization algo-
ithms in the past for different purposes. The authors have used
metaheuristic search to find the best weights when ensembling
s a result of their analysis. Several meta-heuristic-based algo-
ithms are accessible, including coral reefs [16], particle swarm
ptimization [17], and evolutionary algorithms [18]. Since evo-
utionary algorithms are global optimization techniques that are
calable to higher dimensional problems, the authors have em-
loyed evolutionary algorithm-based optimization [19]. They can
andle evaluation functions that do not produce a good result in a
pecific time and are resilient to noisy evaluation processes [20].
oreover, the algorithms are easily adaptable to new problems.
he algorithm can almost always be modified and tailored. Nev-
rtheless, many studies have been done to determine which
volutionary method is appropriate for a specific task.
Many algorithms may combine different classifiers to create an

nsemble model, with the majority vote being the most straight-
orward. Despite its simplicity, it has been suggested that the
ajority vote is the optimal technique if the mistakes among

he classifiers are not connected. The mathematical concept of
ondorcet’s Jury Theorem implies that the majority vote taken
y independent members in a group is bound to produce better
esults than just one individual in the group and this result im-
roves as the number of voters increases. This theorem states that
f a majority of independent members in a group, individually, can
ake the correct decision rather than making a random choice,

hey are better at decision-making than just one group mem-
er. This theorem in applications with Neural Networks helps
nsemble the output of multiple trained deep learning models
ith good outcomes to give results better than any individual
odels. To the best of the author’s knowledge, the jury theorem

s being validated and implemented on neural networks for the
irst time in this research. The proposed method uses the theorem
o ensemble the outputs of multiple Deep CNN classifiers to pro-
uce results better than any individual model. Furthermore, the
2

Jury theorem-based proposed method is computationally much
more efficient than traditional ensembling approaches as it is not
required to be trained again at the end to initialize the models’
weights.

The primary contributions of our work can be summarized as
follows:

1. Various Image preprocessing techniques such as NLM De-
noising, CLAHE, BCET, and Otsu’s thresholding are imple-
mented on the LC25000 Lung and Colon histopathological
dataset to enhance the input image quality. On this sub-
stantially improved input data, features were extracted
using Deep CNN pre-trained models, with the model per-
formance analyzed after implementation.

2. Ensemble learning methods are implemented on six DCNN
classifiers from different architectural families as base
learners. In addition, the deep stacking Ensemble approach
is proposed to combine the features of the different clas-
sifiers to produce higher accuracy than any individual
models.

3. The authors proposed a Metaheuristic optimization based
approach — Differential Evolution for optimizing the weight
assigned to the meta learner on ensembling the top DCNN
models. This method shall drastically enhance performance
as weights are optimized instead of assigned randomly.

4. Finally, the authors proposed and validated the mathemati-
cal concept of Condorcet’s Jury theorem in the field of study
of neural networks. The proposed Jury based approach
uses the ‘N’ individual classifiers’ score to determine the
final score. Compared to ensembling methods, this method
is computationally efficient and has produced the best
classifier accuracy.

The remaining contents of the study can be summarized as
follows. Section 2 is dedicated to analyzing the previous work
of various researchers in detecting Lung and Colorectal Cancer
and the Ensembling approaches they have employed. Section 3
deals with the various Materials and Methods used and entails
proposed algorithms and methods in this study. Finally, Sec-
tion 4 discloses and covers experimentation and the results of the
aforementioned experiments.

2. Related works

Various studies have been conducted to assist with the rapid
detection and diagnosis of cancer in patients. In this section, the
authors reviewed and analyzed previous work on detecting lung
and colon cancer using deep learning techniques. In particular,
the authors aim to understand and compare the work done
on the dataset chosen for this research. The research studies
through [21,22] are conducted on the LC25000 lung and colon
dataset for histopathological images. Although the dataset is rel-
atively very recent, researchers have done some substantial work.
These findings after review work are presented below.

Masud et al. [21] employed a classification method for the 5
classes of lung and colon cancer in the histopathological image
dataset, achieving a maximum accuracy of 96.33%. For this, 4
sets of features were extracted from two image processing al-
gorithms. These were combined to form a new set of features
for image classification. Whereas in Mangal et al. [23], a shallow
neural network architecture was proposed for the classification
of histopathological images of the lung (3 classes) and colon (2
classes) with an accuracy of more than 97% and 96%, respec-
tively. The basic CNN architecture was used, which consisted of
the Input, Convolutional, Pooling, Flatten, Dense, and Dropout
layers. A split of 80-10-10 was taken into account with future
work in utilizing different architectures with hyperparameter
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ptimization considered. In Kumar et al. [24], the authors aim
o compare and analyze two feature extraction approaches as
xtraction from handcrafted features and extraction from deep
eural networks. Popular classifiers such as Gradient boosting,
ultilayer Perceptron, Support Vector Machine (SVM) with RBF
ernel, and Random forest (RF) were used to classify lung and
olon cancer in both the approaches. A significant improvement
f approximately 5% was observed in accuracy and other perfor-
ance metrics in the case of utilizing deep CNNmodels compared

o the handcrafted features. DenseNet-121 with RF classifier was
bserved to show the best performance of the experimented
eep learning models, with an accuracy of 98.6%. The substantial
ork done by Mesut Togacar [25] used the model DarkNet-19 for
raining the image classes of the lung cancer and colon cancer
ataset. The feature set extracted was used to select inefficient
eatures from the set by using meta-heuristic Manta-Ray Foraging
nd Equilibrium optimization algorithms. The efficient feature
ets were obtained by separating the inefficient sets from the
eature set, using the Complementary rule. SVM was used to
ombine and classify these features with an overall accuracy of
9.69% obtained on a dataset split of 70–30 for training and
esting respectively. The proposed method can be used for build-
ng specific approaches on different datasets in the future. The
imited yet beneficial work done in 5-class classification using
istopathological images was described briefly.
Talukder et al. [26] proposed a hybrid ensemble deep fea-

ure extraction model to detect lung and colon cancer from
istopathological images efficiently. Their proposed methods ac-
ieved a 99.05% accuracy in classifying lung images, 100% ac-
uracy in colon images, and overall 99.30% accuracy in 5-class
lassification of both lung and colon images. Li et al. [27] pro-
osed a novel method named embedded fusion mutual learning
EFML) for pathological image classification. The authors jointly
upervised model training by combining the logits output and
he fused feature maps. The evaluation has been performed
n three datasets: BreaKHis, BACH, and LC25000. On LC25000,
he proposed method achieved an overall accuracy of 98.50%
n 5-class classification. Lin et al. [28] developed an extremely
ight plug-and-play module called Pyramidal Deep-Broad Learn-
ng (PDBL) to boost classification performance without the hassle
f retraining for any well-trained classification backbone. The
roposed module achieved a 96.49% accuracy with the ResNet50
ackbone on the LC25000 dataset. Fan et al. [29] compared the
bility to categorize histopathological cancer images in binary
reast cancer datasets and multiclass lung and colon cancer
atasets using the traditional softmax classifier and the SVM
lassifier-based transfer learning technique. An approach that
ies the SVM classifier to the fully connected (FC) layer of the
oftmax-based transfer learning model is proposed to improve
lassification accuracy. The proposed method calls for training
he newly added FC layer using the softmax-based model on
he target dataset in the first stage and then training the SVM
lassifier using the newly trained FC layer in the second step. The
verall accuracy achieved was 99.44% on the LC25000 dataset.
ehmood et al. [30] developed an alternative to the present can-
er detection techniques, a computationally efficient model for
he rapid and accurate diagnosis of lung and colon cancers. The
pplication of the proposed approach increased overall accuracy
rom 89% to 98.4% and demonstrated computing efficiency.

Furthermore, the researchers have also worked on 2 and 3-
lass classification using different networks to test the classifier
erformance. In [31], the authors proposed a CNN model named
A_ColonNET for detecting colon cancer from image data. The
5-layer model consisted of the usual Convolutional, Batch nor-
alization, and Relu layers, with a softmax classifier and SGD

ptimization method. The classification accuracy achieved was

3

99.75% on 10,000 images with an 80–20 training and testing split.
In Nishio et al. [32] the authors aim to build a CAD system to
classify different types of lung cancers using histopathological
images, and for this, two datasets were considered. The private
dataset consists of 94 images in 5 classes, and the public dataset
consists of 15,000 images in 3 classes. Machine learning algo-
rithms were used to classify the image features obtained from 2
feature extraction techniques: conventional texture analysis (TA)
and homology-based image processing (HI). In both the datasets,
it was observed that the models with HI were more beneficial
for the CAD systems than TA. Adu et al. [22] proposed Dual hori-
zontal squash CapsNet. This method uses a new squash function,
HSquash, which effectively squashes all vectors, long and small.
Encoder feature fusion (EFF) is used to obtain richer features from
complex information to improve the classification. Sigmoid acti-
vation function was used to get better normalization. The results
were analyzed on the LC25000 dataset for lung and colon images
showing an accuracy of 99.23%. This was compared with results
obtained on traditional CapsNet, showing an improvement of
over 14%. The transfer learning application on the proposed DHS-
CapsNet will be analyzed for future work. In [33], 8 pre-trained
CNN models and image augmentation were used for training on
the LC25000 dataset. Model performance was assessed on lung
and colon subtypes (binary classification) with 97%–100% accu-
racy. GradCAM and SmoothGrad were utilized to picture class
activation and saliency maps to improve the classification.

The authors also include two other works from different
datasets for metastasis detection using deep learning techniques
for studying the different approaches used. In Paik et al. [34],
the authors developed a CAD algorithm called Surface normal
overlap, which was applied to lung nodule and colonic polyps
detection in helical CT images. The method’s theoretical aspects
were illustrated using a statistical shape model. Its performance
was optimized using CT simulations and assessed using per-
lesion cross-validation on 8 CT chest and 8 CT colonography
datasets. The results show that the algorithm proposed achieved
100% sensitivity for colonic polyps at 7.0 false positives and 90%
sensitivity for solid nodules at 5.6 false positives/dataset. Khan
et al. [35] explore clustering analysis using an extension of fuzzy
k-means for feature subspace generation, which was used to form
the input clusterings for ensembling. The proposed algorithm
extended the k-means fuzzy algorithm by two steps. The first
step was to introduce a penalty term for making the algorithm
insensitive to initializing cluster centroids. The second step was
to automate the clustering process for updating feature weights,
which addresses the noise values in the dataset. Experiments
were conducted to show that the proposed algorithm outper-
formed popular clustering algorithms. The authors aim to test
their method for cluster analysis on real-world applications and
other types of data in the future.

The comparative analysis of existing techniques can be seen
in Table 1.

Even though various researchers have worked on this problem
domain, and the work done so far is beneficial, with different
deep learning methods being used and proposed, it still has many
scopes left to work. Also, in the medical domain, the higher the
accuracy, the more real-world reliability of the proposed solution.
For example, suppose if a model gives an accuracy of 99%, it will
only misclassify a single image out of 100 tested images. But if
tested on a large scale of 1M million images, it will misclassify
10000 images. So, the authors tried to improve the accuracy
further in this research. This was our primary motivation to
conduct this research. The work by Togacar [25], in particular, is
taken into account by the authors to compare the classification
performance as it had the highest 5-class accuracy observed so

far.
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Table 1
Comparative analysis of existing techniques.
Year Author(s) Techniques used Class accuracy Advantages Findings

2021 Masud et al.
[21]

Image classification 5-class - 96.33% Techniques used for feature
extraction led to good results.

Experimentation on various deep learning
models would improve the performance.

2021 Adu et al. [22] Capsule neural
network

5-class - 99.23% Horizontal squash function used on
CapsNet along with encoder feature
fusion, a novel approach.

Transfer learning can be applied to
increase the usability of the model
proposed.

2021 Mangal et al.
[23]

Shallow neural
networks

3-class- >97%
2-class- >96%

Use of simple CNN architecture for
achieving reasonable performance

More approaches can be analyzed to
further enhance the model.

2022 Kumar et al.
[24]

Feature extraction
techniques, transfer
learning

5-classes - 98.6% Handcrafted feature extraction
techniques have been analyzed and
their performances compared.

Feature ranking techniques and stain
normalization is to be used in future.

2021 Mesut Togacar
[25]

Metaheuristic
Optimization
techniques

5-class - 99.69% Great jump in accuracy observed
after training on DarkNet-19 with
optimization techniques used.

The techniques used have to be validated
using other datasets, or specifically
devised for them.

2021 Yildirim et al.
[31]

CNN based model 2 class - 99.75% Proposed a model for accurate
detection of Colon cancer

The model architecture could be
implemented using lung image classes as
well.

2021 Nishio et al.
[32]

Image feature
extraction
techniques

3-class - 99.43% ImplementIon was done on 2
datasets of lung cancer for analyzing
two feature extraction techniques.

The comparison and conclusion deduced
on the techniques requires more sufficient
proof.

2020 Garg et al. [33] Pre Trained CNN
models

5-class - 96% One of the earlier works. Smooth
Cam and GradCam were used to
enhance images after training.

The techniques used are from pretrained
models only.
w
a
i

i

G

3. Materials and methods

In this section, the authors illustrate the methods imple-
ented and techniques used for the experimentation. The section
tarts with data-preprocessing techniques used in this study, fol-
owed by the background and theory of theorems and optimiza-
ion methods used in this research, chosen training parameters,
xisting ensemble methods, and finally, the proposed ensemble
ethods.

.1. Data preprocessing

Adjustments are made to the raw data before inputting it to
he machine learning, or deep learning algorithm is called Image
reprocessing. It is used to format images before the model uses
hem for training and inference purposes. This includes resizing,
rienting, color corrections, etc. Sometimes Image preprocessing
lays a vital role in boosting the classifier accuracy in deep
earning. Training a convolutional neural network on raw images
s likely to result in poor classification results. With the help
f Image preprocessing, we can reduce unwanted distortions in
n image and enhance some important features for our model
o learn. Besides accuracy, Image preprocessing is also neces-
ary to reduce model complexity and the computational cost of
he entire training procedure. Four different image preprocessing
echniques have been used in this research: NLM, CLAHE, BCET,
nd Otsu’s thresholding.

.1.1. Fast non-local means denoising algorithm
Image denoising is a fundamental challenge in image pro-

essing and computer vision to estimate the original image by
uppressing noise from a noise-contaminated version of the im-
ge [36]. Image noise may be caused by various intrinsic and
xtrinsic factors that are difficult to prevent in real-world sce-
arios.
The non-local means (NLM) algorithm, widely used in image

reprocessing, is one of the best image denoising algorithms
ecause of its superior ability to retain image texture details [37].
ut due to its nonlocality when searching for similar pixels, the
lgorithm’s time complexity is exceptionally high. Due to this, the

uthors used a Fast Non-Local Means algorithm [38]. It substitutes

4

window similarity with a modified multi-resolution-based tech-
nique that utilizes fewer comparisons rather than comparing all
pixels [39]. As shown in Eq. (1), it weighs neighbor pixels with
similar neighborhoods.

g(p) =
1
Z

∑
q∈I

BW (p − q)Gσ

(
Np − Nq

)
f (q) (1)

here, BW (p− q) signifies to choose q only within W-box radius
round p and Gσ

(
Np − Nq

)
represent similarity weight based on

ntensities of neighborhood around p.
Eq. (2) represents the Gaussian weighting based on difference

n image intensities.

σ (x) = e
−

(∑
i x

2
i

2σ2

)
(2)

If W covers the whole image, each output pixel depends on
input pixels at any location ‘‘non-local’’, as shown in Eq. (3).

BW (x) =

{
1 if max (|x1| , |x2|) ≤ W
0 else

(3)

3.1.2. Contrast limited adaptive histogram equalization
After removing noise from the image, the next step is to

balance the contrast. The raw dataset we get often contains
washed-out images with unbalanced contrast. So, to equalize the
histogram, we may stretch it to encompass the whole range.
CLAHE is a contrast-over-amplitude equalization version of Adap-
tive Histogram Equalization (AHE). Instead of a whole image, it
works using tiles or slabs, which are tiny parts of an image [40].
Each slab’s contrast transform function was computed separately.
For the histogram, the clipping rule is shown in Eq. (4).

Y = a(X − b)2 + c (4)

where X is the input and Y is output image. The coefficients a, b,
c and s are derived from Eqs. (5)–(8) respectively.

a =
(H − L)

(h − l)(h + l − 2b)
(5)

b =
h2(E − L) − s(H − L) + l2(H − E)

(6)

2[h(E − L) − e(H − L) + l(H − E)]
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= L − a(l − b)2 (7)

s =
1
N

n∑
i=1

x2i (8)

where, H ′ is the maximum value of Y , L is the minimum value of
, E is the mean value of Y , s is the mean square sum of X , l is

the minimum value of X , e is the mean value of X , and h is the
maximum value of X .

3.1.3. Balance contrast enhancement technique
Following CLAHE, we used BCET to further improve the image.

BCET solves the problem of discriminating color (RGB) composi-
tion without affecting the histogram pattern of the input image,
and the contrast of the image may be stretched or compressed
(x).

One of the most common causes of bad color composite im-
ages is color bias. To avoid this, the value range and mean of
the three bands used for color composition must be identical. For
this situation, the BCET offers a straightforward approach. BCET
may stretch (or compress) images perfectly to a value range and
mean specified by the user without affecting the main forms of
the image histograms using a parabolic or cubic function defined
by three coefficients a, b, c [41]. The answer is calculated using
the parabolic function produced from the input image. Eq. (9)
describes the parabolic function utilized in BCET.

if Hslab (i) > NCL then Hslab-clip (i) = NCL

else if Hslab (i) + Navggray then Hslab-clip (i) = NCL

else Hslab-clip (i) = Hslab (i) + NCL

(9)

where, Hslab (i) is original histogram, Hslab-clip is clipped his-
togram of each slab at ith region, NCL is the actual clip-limit and
Navggray is the average of the remaining pixels. The contrast of
each slab is enhanced, where the histogram of output closely
matches the histogram defined by the ‘Distribution’ parameter.
The step of the redistribution of pixels is given by Eq. (10).

Step = Ngray /Nremain , (10)

where Nremain is the remaining clipped pixels, and Ngray is the
gray level of the slabs.

3.1.4. Image binarization - OTSU’s thresholding
The image was thresholded to emphasize the features as the

final step. Binarizing an image divides pixels into foreground and
background, allowing key features to be distinguished from the
background. Simple thresholding has the drawback of requiring
you to manually select the threshold value [42]. We can manually
test how good a threshold is by experimenting with different
settings, but this is time-consuming and may fail in a real-world
scenario. As a result, we will need a mechanism to calculate the
threshold automatically.

In image processing, Otsu’s approach is an adaptive thresh-
olding method for binarization [43]. It can determine the best
threshold value for the input image by examining all threshold
values. The algorithm seeks a threshold that reduces intra-class
variance, defined as the weighted sum of the variances of the two
classes.

The basic concept is to split the image histogram into two clus-
ters using a threshold established by minimizing the weighted
variance of these classes denoted by σ 2

w(t) [44]. The entire com-
putation shown in Eq. (11).

σ 2
w(t) = w1(t)σ 2

1 (t) + w2(t)σ 2
2 (t) (11)

where, w1(t), w2(t) are the probabilities of the two classes split
by a threshold t that is between 0 and 255 inclusively.
5

There are two methods for determining the threshold [45]. The
first is to reduce the within-class variance, which is stated above
σ 2

w(t), and the second is to maximize the between-class variance,
which is defined in Eq. (12)

σ 2
b (t) = w1(t)w2(t) [µ1(t) − µ2(t)]2 (12)

where µi is the class i mean.
The probability P for each pixel value in two independent

clusters C1, C2 is derived using the cluster probability functions
defined in Eqs. (13) and (14) respectively.

w1(t) =

t∑
i=1

P(i) (13)

w2(t) =

I∑
i=t+1

P(i) (14)

It is worth noting that the image may be represented as an
intensity function f (x, y), with gray-level values. The number of
pixels with a given gray level i is denoted by i. The image’s total
number of pixels is n. As a result, the probability of gray-level i
occurrence is represented by Eq. (15).

P(i) =
ni

n
(15)

The C1 pixel intensity values are in [1, t], while the C2 pixel
intensity values are in [t + 1, I], where I is the maximum pixel
value (255).

The next step is to calculate the means for C1, C2, which are
ndicated by µ1(t), µ2(t) appropriately shown in Eqs. (16) and
17) respectively.

1(t) =

t∑
i=1

iP(i)
w1(t)′

(16)

2(t) =

I∑
i=t+1

iP(i)
w2(t)

(17)

Now recall the within-classes weighted variance equation
from earlier. Next, we will determine the remaining compo-
nents

(
σ 2
1 , σ 2

2

)
by combining all of the ingredients mentioned in

Eqs. (18) and (19) respectively.

σ 2
1 (t) =

t∑
i=1

[i − µ1(t)]2
P(i)

w1(t)′
(18)

σ 2
2 (t) =

I∑
i=t+1

[i − µ2(t)]2
P(i)

w2(t)
(19)

It is worth noting that if the threshold is set wrong, the vari-
nce of some classes will be relatively high. Therefore, we need
o add together the within-class and between-class variances to
btain the overall variance:
2
T = σ 2

w(t) + σ 2
b (t) (20)

where σ 2
b (t) = w1(t)w2(t) [µ1(t) − µ2(t)]2.

Overall, the authors have implemented four types of Image
reprocessing techniques to improve image quality, as shown
bove. The results of all mentioned preprocessing techniques can
e seen in Fig. 1.

.2. Ensemble learning

Ensemble learning is an umbrella term for all the techniques
ormed by combining various inducers or base learners [46]. It
s believed that the intuition for ensemble learning techniques
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or solving a machine learning task stems from the concept of
ondorcet’s Jury Theorem (1785), which stated that the majority
ote of a group of independent voters would be more competent
han that of a single voter [47].

Ensembling techniques uses different models and combinedly
raining them to form the ensemble model or meta learner,
mproving the performance by reducing the errors or drawbacks
f any particular method or base learner [48]. The ensemble
pproach usually outperforms any of the individual models used.
here are various methods of performing ensemble learning on
set of models, with the main ones being — Bagging, Boosting,
nd Stacking algorithms [49]. Bootstrap aggregation or Bagging
s used to form different base learners by varying the sample
ataset. Boosting is an ensemble method that uses the errors
ade by previous classifiers to improve performance. Stacking is
method that uses different types of models on the training data
nd then a model to combine them. In this research, the authors
sed the Stacking algorithm to train the meta learner.

.3. Condorcet’s Jury Theorem

Condorcet’s Jury Theorem is a mathematical theorem for cal-
ulating a group’s accumulative decision-making relative prob-
bility. It states that if a majority of independent members in
group, individually, can make the correct decision rather than
aking a random choice, they are better at decision-making than

ust one member of that group [50]. This theorem in applications
ith Neural Networks helps ensemble the output of multiple
rained deep learning models with good outcomes to give results
etter than any individual models.
Condorcet’s Jury theorem applies to the following hypothetical

ituation: assume we have to choose between options + or −.
6

ssume one of the two choices is ‘right’, but we do not know
hich one [51,52]. Furthermore, imagine there are n models in a
et, and the entire set must make a decision. A majority vote is
ne feasible way. So, each model has a vote Xi, which has a value

of either +1 or −1 based on its calculated weights, and the group
hoice is either + or − depending on whether Sn =

∑n
i=1 Xi is

ositive or negative.

.3.1. Theorem
If individual votes Xi, i = 1, . . . , n are independent of one an-

ther, and each voter makes the correct decision with probability
> 1

2 , then as n → ∞, the group’s chance to reach a correct
decision by majority vote approaches 1 as n increases [53]. Fig. 2
shows that as the number of voters increases (value of n), the
likelihood of reaching a right choice by majority vote increases.

3.3.2. Proof
This is a consequence of the law of large numbers. Let a =

−1/2 > 0. Since the problem is fair in + and −, we may without
oss of generality assume the correct answer is + [54].

Then EX1 = −
( 1
2 − a

)
+
( 1
2 + a

)
= 2a > 0, and the weak law

of large numbers states that Sn
n converges in probability [55] to

EX1 = 2a, where by converging in probability we mean that for
any ϵ1, ϵ2 > 0 there is N large enough such that for every

n ≥ N, P
(⏐⏐⏐⏐Snn − EX1

⏐⏐⏐⏐ < ϵ1

)
> 1 − ϵ2.

aking ϵ1 = 2a, we see that the probability of a correct decision
s

(Sn > 0) = P
(
Sn
n

> 0
)

≥ P
(⏐⏐⏐⏐Snn − 2a

⏐⏐⏐⏐ < 2a
)

→ 1

which is what we needed to show.
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Fig. 2. Probability vs. no. of voters: Condorcet’s Jury Theorem.

The probability, PN , that a model will deliver the correct an-
swer, we calculated using Condorcet’s jury theorem [56] as shown
in equation.

PN =

N∑
i=m

(
N!

(N − i) · i!

)
(p)i(1 − p)N−i

where, N = the number of models, p = the probability of an
individual model being right m = the number of models required
for a majority

3.3.3. Proof based on optimal Bayes classifier
The Bayes classifier which minimizes the probability of mis-

classification Pr(ŷ ̸= y) follows the maximum a posterior (MAP)
criteria ŷBaycs = argmaxy Pr

(
y | {yi}ni=1

)
. We now show that the

majority rule is equivalent to MAP. According to Bayes rule,

Pr
(
y | {yi}ni=1

)
=

Pr
(
{yi}ni=1 | y

)
Pr(y)

Pr
(
{yi}ni=1

)
Therefore, for equally probable classes Pr(y = 0) = Pr(y = 1),

aximizing the MAP is equivalent to maximizing the likelihood:
rgmaxy Pr

(
y | {yi}ni=1

)
= argmaxy Pr

(
{yi}ni=1 | y

)
The likelihood

or y = 1 follows the Binomial distribution:

r
(
{yi}ni=1 | y = 1

)
=

n∏
i=1

p(yi+1)/2(1 − p)(1−yi)/2.

Applying log on both sides, one get the log likelihood as:

log
(
Pr
(
{yi}ni=1 | y = 1

))
=

1
2

n∑
i=1

log(p) (yi + 1)

+ log(1 − p) (1 − yi)

Similarly, for y = 0, log
(
Pr
(
{yi}ni=1 | y = 0

))
=

1
2

∑n
i=1 log(1 −

) (yi + 1) + log(p) (1 − yi) . Therefore, the log likelihood ratio
LR = log

(
Pr({yi}ni=1|y=1)
Pr({yi}ni=1|y=0)

)
. equals to:

LLR = log
(

p
1 − p

) n∑
i=1

yi

he latter concludes the proof as it shows that ŷBayes = argmaxy
r
(
y | {yi}ni=1

)
= sign

(∑n
i=1 yi

)
so that the MAP criteria coincides

ith the majority rule, which minimize the error probability (for
quiprobable prior).
7

Fig. 3. Representation of f (x) =
∑n

i x
2
i /n.

3.3.4. Condorcet’s Jury Theorem in neural networks
Given a set of models who must choose between a right

conclusion with probability 0 ≤ p ≤ 1 and a wrong one with
probability 1 − p, Condorcet’s jury theorem [57] states :

1. If p > 1/2 (i.e., each model is more likely to classify cor-
rectly than incorrectly), increasing the number of models
improves the likelihood that the majority selects correctly,
and the probability of a correct decision approaches one as
the number of models increases as shown in Fig. 2.

2. if p < 1/2 (such that each model is less likely to vote erro-
neously than correctly), adding additional models reduces
the likelihood that the majority selects properly, and the
probability of a right judgment is maximized for a model
of size one.

3.4. Differential evolution — MetaHeuristic search based optimiza-
tion

Differential evolution (DE) is a population-based metaheuristic
search technique that improves a candidate solution through
an evolutionary process [58]. These algorithms make minimal
assumptions about the underlying optimization issue and may
rapidly explore enormous design spaces. With multi-modal prob-
lem resilience, DE is one of the most adaptable and stable
population-based search algorithms available.

Let f (x) =
∑n

i x
2
i /n, for n = 32 dimensions. f (x) =

∑n
i x

2
i /n

2D view is shown in Fig. 3.
The goal is to find a solution m for which f (m) ≤ f (p) for all p

n the search-space, which means that m is the global minimum.
f Xa is a candidate solution and XaT is a target vector for Xa from
b,Xc,Xd as per Eq. (21).

aT = Xb + F (Xc − Xd) (21)

here F ∈ [0, 2] and it is called as scaling factor which controls
he amplification of differential variation. Xa and XaT are subject
o crossover operator as per Eq. (22).

aU,i =

{
XaT ,i if rand ≤ CR
Xa,i otherwise

(22)

here CR is crossover rate and CR ∈ [0, 1]. After that selection
perator is applied as per Eq. (23).

anext =

{
XaU if f (XaU ) ≤ f (Xa)

Xa otherwise.
(23)

Differential Evolution differs from standard genetic algorithms
because it utilizes directional information within the population
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w

hrough a target and unit vector. These capabilities allow dif-
erential evolution to converge faster to solutions at the cost of
oor exploration. The detailed procedure of Differential Evolution
ptimization is demonstrated in Algorithm 1. Also, a comparison
etween different metaheuristic computing techniques is shown
n Table 2.

Algorithm 1: Differential Evolution Optimization Algorithm
BEGIN
(1) Generate a random population of people at the
beginning of the search area.

(2) while iter <= max num of generations do
(3) iterate over every individual in the population

(A) perform mutation
(B) perform recombination (‘‘crossover’’ in GA

lingo)
(C) perform selection

(4) if stopping criterion has been met:
exit and return best individual

else
iter = iter + 1
go back to step 3

end
END

3.5. Deep feature extraction and model training

Deep feature extraction’s primary goal is to extract prominent,
iscriminating information from the original raw images and
xpress it in a lower-dimensional space. Various pre-trained net-
orks were employed for deep feature extraction in this study.
rom Fig. 4, we flatten the dimensions after freezing all layers
xcept the final layer of a pre-trained DCNN model. Then we
dded a fully connected dense layer consisting of 1024 neurons.
e added a dropout layer to remove 50% of neurons in each

teration to avoid overfitting. Finally, we added a dense layer con-
isting of 5 neurons for classification. The deep features were then
rained using the softmax classifier for classification purposes.
he modified EfficientNet architecture is also shown is Fig. 5.
For feature extraction and classification, there is often a need

or optimizing and improving deep learning models. The use of
any techniques can do this. The methods and parameters used

or the training of our models have been explained in detail in this
ection. These include the Cross-entropy loss function, Softmax
ctivation function, learning rate scheduler, and optimizers such
s Adam.

.5.1. Loss function
Loss functions are used to analyze how well the algorithm

odels the dataset. It computes the difference between the cur-
ent and desired output to optimize the model performance. The
esser the loss value, the better the model will do, as the weights
8

will be optimized to minimize the loss function value. The Cross
entropy loss function is a popular function used for classification
problems.

Categorical cross-entropy, one of the subtypes of cross-ent-
ropy, is a loss function used for multi-class classification and has
been used in this work. The mathematical Eq. (24) describes the
computation of the cross-entropy loss function.

LCE = −

n∑
i=1

ti log (pi) , for n classes, (24)

here ti is the truth label and pi is the Softmax probability for
the ith class.

3.5.2. Optimizer
Adam optimization is a stochastic gradient descent method

that has its name derived from Adaptive Moment Estimation [59].
This is because it uses estimations of the first and second mo-
ments of gradient descent to adapt and compute the individual
learning rates for each network weight. It is inherited from RM-
SProp and AdaGrad and has their combined advantages. Adam’s
optimization method is computationally very efficient as it re-
quires less memory even when working with problems involving
a large number of data and parameters. Adam is intuitively a
combination of RMSProp and Stochastic Gradient Descent with
Momentum. It uses the moving average of the gradient in place
of the gradient itself, like in SGD with momentum, and it uses
squared gradients to scale the learning rate like in RMSProp.
Adam optimizer uses an exponentially decaying average of past
gradients (mt) and past squared gradients (vt) as defined in
Eqs. (25) and (26) respectively. The term β1 and β2 are the
forgetting factors for the mean and non-centered variance of the
gradient respectively.

mt = β1mt−1 + (1 − β1)

[
δL
δwt

]
(25)

vt = β2vt−1 + (1 − β2)

[
δL
δwt

]2
(26)

where,

1. ϵ = a small +ve constant to avoid ‘division by 0’ error
when (vt− > 0) ·

(
10−8

)
2. β1&β2 = decay rates of the average of gradients in the

above two methods. (β1 = 0.9&β2 = 0.999)
3. α - Step size parameter/learning rate (0.001)

3.5.3. Swish activation function
The study uses the Swish function by Google, proposed by

Ramachandran et al. [60]. Swish is an activation function dis-
covered after rigorous experimentation using automatic search
techniques to find the best possible activation function. As of
now, the most successful and popular activation function is ReLU.
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Table 2
Comparison of different metaheuristic computing techniques.
Genetic Algorithm (GA) Differential Evolution Optimization (DEO) Particle Swarm Optimization (PSO)

Performance is faster than DEO and PSO Performance is faster than PSO Performance is faster than GA
Less parameters than DEO Less parameters than PSO More parameters than DEO and GA
Difficult to be implemented Easier to be implemented compared to GA and PSO Easier to be implemented than GA

Repeatedly modifies a population of individual
solutions by mainly concentrating on global search.

Utilizes directional information within the population
through the usage of a target and unit vector

Carries out global search and local
searches simultaneously

Converge slower Converge faster than GA and PSO Converge faster than GA
Fig. 5. Modified EfficientNet architecture.
he authors have claimed that Swish has consistently compared
o and outperformed the ReLU activation function on deeper net-
orks after implementing the ImageNet dataset on different pre-
rained models. Furthermore, Swish was said to perform better
han the other functions with a little tuning. The Swish activation
unction is mathematically represented as shown in Eq. (27).

f (x) = x · sigmoid(βx) where β is a constant or trainable
parameter

S(x) =
1

1 + e−x (27)

(x) = sigmoid function e = Euler’s number

.5.4. Classifier
The softmax classifier generalizes the binary Logistic Regres-

ion classifier for multiple classes. It provides normalized class
robabilities as output for each class. It takes a vector of real
alues scores and squashes it to values between 0 and 1 that sum
o 1 for all classes. The softmax classifier minimizes the cross-
ntropy loss between the predicted class probabilities and the
ruth labels. Softmax function is defined in Eq. (28).

(z⃗)i =
ezi∑K
j=1 e

zj
(28)

here, σ = softmax, z⃗ = input vector, ezi = standard exponential
function for input, K = number of classes in the multi-class, ezj
= standard exponential function for output.

3.5.5. Learning rate schedule : ReduceLROnPlateau
A learning rate schedule alters the learning rate throughout

the learning process and is most commonly altered between
epochs/iterations [61]. When learning becomes stagnant, models
frequently benefit from slowing the learning rate by a factor
of 2-10 [62]. This callback watches a quantity and reduces the
9

learning rate if no progress is noticed after a ‘patience’ number of
epochs [63]. This is primarily accomplished by using two param-
eters namely decay and momentum. Time-based learning sched-
ules alter the learning rate based on the learning rate of the pre-
vious time iteration. When the decay is taken into consideration,
the learning rate may be calculated as shown in Eq. (29).

ηn+1 =
ηn

1 + dn
(29)

where, η is the learning rate, d is a decay parameter and n is the
iteration step.

When a measure stops improving, ReduceLROnPlateau is a
callback that reduces the learning rate. This callback tracks a
quantity and reduces the learning rate by a ‘‘factor’’ value if no
progress is noticed after a ‘‘patience’’ number of epochs as shown
in Eq. (30).

new lr = lr ∗ factor (30)

3.6. Existing ensemble methods

Ensemble learning approaches combine the benefits of both
deep learning and ensemble learning, resulting in a model with
improved generalization performance. Ensemble learning was
used in several research studies to improve performance, reduce
errors, and avoid overfitting. Researchers have developed sev-
eral strategies for improving ensemble methods by discovering
various weighting schemes. This section discusses some of the
previously utilized ensemble and weighting scheme approaches,
including their advantages and disadvantages.

3.6.1. Weighted average ensemble
In an ensemble model, each base learner is given the same

weight for a prediction. There are times when we want extremely
competent models to contribute more to an ensemble predic-

tion, and other times when we want less competent models to
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ontribute less to an ensemble prediction. So, penalizing a less
ccurate model and rewarding a more accurate model can lead
o even better predictions. A weighted average ensemble allows
ifferent models to contribute to a prediction in proportion to
heir degree of assurance or anticipated performance.

.6.2. Averaging technique for assigning weights
Instead of generating just one model, ensemble averaging

nvolves creating numerous models and merging them to achieve
he desired outcome. Because the multiple flaws of the models
‘average out’’, an ensemble of models frequently outperforms a
ingle model. The most basic form of ensemble learning is model
veraging.
A more advanced variant of ensemble average considers the

inal result a weighted sum rather than a simple average of all
he experts. If each expert is yi, then the overall result ỹ can be
defined as Eq. (31).

ỹ(x; α) =

p∑
j=1

αjyj(x) (31)

where α is a set of weights.

3.6.3. Grid search technique for assigning weights
Grid search values are an exhaustive yet straightforward way

of determining ensemble member weights. We can create a
course grid with weight values ranging from 0.0 to 1.0 in 0.1
increments and then build all base learner’s element vectors. A
Cartesian product is made by generating all conceivable combi-
nations as shown in Eq. (32)

A × B = {(a, b) | a ∈ A and b ∈ B} (32)

We can now count each weight vector produced by the Carte-
ian product, normalize it, and assess it by generating a prediction
nd retaining the best for inclusion in our final weight averaging
nsemble. We may report the performance of our weight average
nsemble on the test dataset after it has been identified, which
e anticipate being better than the best single model and ideally
etter than the model averaging ensemble.
One drawback of this method is that the weight vectors do

ot total to one (the unit norm), as is necessary. However, by
omputing the total absolute weight values (known as the L1
orm) and dividing each weight by that value, we may compel
he resulting weight vector to have a unit norm.

1 norm: ∥w∥1 =

n∑
i

|wi|

quared L2 norm: ∥w∥
2
2 =

n∑
i

w2
i

This procedure is also very time taking and computation-
lly costly. Each time a new best-performing set of weights is
dentified, its performance on the test dataset is reported. A
irected optimization technique is an alternative to exploring
eight values which is demonstrated in Section 3.7.2

.6.4. Rank based Fuzzy ensemble
In this approach let us say the base learner i’s confidence

cores for C number of classes are
(
P i
1, P

i
2, P

i
3, . . . , P i

C

)
, here i =

, 2, 3. We start by adding up all of the confidence scores from
ach of the base learners [64]. As

(
P i
1, P

i
2, P

i
3, . . . , P

i
C

)
will largely

ollow equation to express probability as per Eq. (33).
C∑

P i
k = 1, ∀i = 1, 2, 3 (33)
k=1

10
Let
(
Ri1
1 , Ri1

2 , Ri1
3 , . . . , Ri1

C

)
and

(
Ri2
1 , Ri2

2 , Ri2
3 , . . . , Ri2

C

)
are fuzzy

anks obtained using 2 non-linear functions. Eqs. (34) and (35)
re used to compute the fuzzy rankings.

i1
k = 1 − tanh

((
P i
k − 1

)2
2

)
(34)

i2
k = 1 − exp

(
−

(
P i
k − 1

)2
2

)
(35)

A classification is rewarded in Eq. (34). If x approaches 1, the
alue of Eq. (34) rises, indicating that the quantity of reward rises.
hen we compute deviation from Eq. (34) in Eq. (35), i.e., if x

pproaches 0, the divergence will be greater.
Let

(
RS i1, RS

i
2, RS

i
3, . . . , RS

i
C

)
be the fused rank scores, where

RS ik is given by Eq. (36).

RS ik = Ri1
1 × Ri2

1 (36)

FSk =

L∑
i=1

RS ik, ∀k = 1, 2, . . . , C (37)

This combined score may be calculated as the final score for
each class. Using Eq. (37), we identify the class with the lowest
fused score and declare it the winner.

3.7. Proposed ensemble methods

3.7.1. Deep stacking ensemble based approach
In this approach, first, we trained the N number of the best-

performing models. We can discover the value of N by experi-
menting with various models on the provided dataset. Because
specific models may perform well on a dataset while others do
not, experimenting is the best technique for choosing models.
We now trained and save the weights of all models one by one.
After training all the models, we freezed all the layers except the
top one and concatenate the output layers of all models. This
procedure is called stacking. After that, we added a multilayer
perceptron layer, a dense layer of 32 neurons, and finally, a
three-neuron output layer for classification.

3.7.2. Differential evolution - Heuristics to optimize weights
Optimization is a search process, but instead of randomly or

exhaustively sampling the space of potential solutions, it em-
ploys any available information to choose the next step in the
search, such as a set of weights with reduced error. Differential
Evolution is one of the few stochastic global search algorithms
which successfully optimizes functions with continuous inputs.
It is necessary to specify a function that will assess a collection
of weights and return a score to be minimized. We can reduce
the classification error (1 – accuracy) as much as possible. The
loss function will be utilized during the optimization phase as
the evaluation function. The optimization process’ boundaries
must also be specified. The boundaries can be defined as a five-
dimensional hypercube with values ranging from 0.0 to 1.0 (for
example, 5 weights for the 5 ensemble members). This proposed
approach is demonstrated in Fig. 6.

The detailed training procedure of the Differential Evolution
Optimization-based ensemble model can be seen in algorithm 2.
After training the initial classifiers, we randomly assigned the
weights to each classifier and then optimize them using the
algorithm. The Differential Evolution algorithm runs for 1000
iterations, and for each iteration, it computes the loss value of
every classifier and then optimizes the weights. After optimizing
the weights, we normalized the weights wj =

aj∑N . After

n=1 aj
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Fig. 6. Flowchart for weights optimization of ensemble model based on Differential Evolution optimization algorithm.
getting the optimized weights, we calculated our ensemble model
score. For that, firstly we get the probabilistic output vector as
shown in Eq. (38).

pm (di) =
{
pm,k (di)

}
(38)

or all K classes where 1 ≤ k ≤ K
Then we computed the weighted sum as per Eq. (39).

k (di) =

M∑
m=1

pm,k (di) · wi,k (39)

After that we get the output class label with the maximum
lass probability as shown in Eq. (40).

(di) = arg max
1≤k≤K

{pk (di)} (40)

.7.3. Majority voting based on Condorcet’s Jury Theorem
In this proposed Algorithm, firstly, we trained the N number of

he best-performing model. Then, we saved the predicted output
abels once each model had been trained. Now, we generated
number of arrays for K number of labels after recording the

xpected labels of each model for each image. Then, we calculated
he score of each label for each model by iterating through each
odel. Finally, we used the majority vote as the ultimate choice
f N models. This proposed approach is demonstrated in Fig. 7.
he majority voting based on Condorcet’s Jury Theorem is used
o calculate the final score as per algorithm 3.

. Experimental results and discussion

.1. Dataset description : LC25000

The dataset used in this research is ‘‘Lung and Colon Can-
er Histopathological Image Dataset (LC25000)’’ by Borkowski
t al. [15] to assist with the requirement for a large variety of
reely available image data used by researchers for training ML
odels. The data is HIPAA compliant and validated and consists of

ive equally balanced classes as 250 benign lung tissue, 250 lung
denocarcinomas, 250 lung squamous cell carcinomas, 250 be-
ign colon tissue, and 250 colon adenocarcinomas. The images for
he 3 lung cancer classes and 2 colon cancer classes were obtained
rom pathology glass slides. The original images were resized to
68 × 768 pixels, and augmentation was performed using the
ython package Augmentor. The dataset was expanded 20 times
o a total of 25000 images with the following augmentations
erformed:
11
Algorithm 2: Algorithm for weights optimization using
Differential Evolution Algorithm
Input:
δ1 : total number of images in training dataset.
δ2 : total number of images in validation dataset.
δ3 : total number of images in testing dataset.
di : the ith input sample of testing dataset.
N : total number of classifiers.
K : total number of classes.
ω∗ : initial weights of trained classifier.
Output :
optimized weights vector
predicted class probability vector
begin:
while i = 1 to δ1 do

while i = j to N do
1. Train all Nj and compute the ω∗

end
end
2. Define bounds of each weights
while i = 1 to 1000 do

while j = 1 to N do
3. Compute loss value (error rate) of j on δ2.
4. Optimize weights using Differential Evolution
Search minimizing loss value.

5. Normalize obtained weights wj =
aj∑N
n=1 aj

.

end
end
while i = 1 to δ3 do

while n = 1 to N do
6. Get the probabilistic output vector
(pm (di) =

{
pm,k (di)

}
for all K classes where

1 ≤ k ≤ K ) of the n th classifier.
end
while n = 1 to N do

7. pk (di) =
∑M

m=1 pm,k (di) · wi,k
end
c (di) = argmax1≤k≤K {pk (di)}
Get the output class label with the maximum class
probability for the i th input sample.

end
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Fig. 7. Flowchart for final score calculation of ensemble model based on Condorcet’s Jury Theorem.
1. Left and right rotations (up to 25 degrees, 1.0 probability)
2. Horizontal and vertical flips (0.5 probability)

This publicly available dataset consisting of 25000 lung and
colon histopathological images divided into 5 classes, with 5000
images in each class, was used in this research.

4.2. Dataset division

A deep learning model may achieve an accuracy of 99%, but
when tested on real-world images, it fails to classify them ac-
curately. So to avoid overfitting and model selection bias, it is
ethical to divide the dataset properly into training, validation,
and testing sets. In addition, our parameter estimates have more
variance when we have less training data. Likewise, our perfor-
mance metric will have more variance if we have less testing
data. Therefore, we should divide the data in such a way that
none of the variances is excessive. As a starting point, generally,
everyone chooses the training set as 80% of the whole dataset and
the remaining 10%–10% for validation and testing, respectively.
But allocating more data in the final testing set ensures the
robustness of the proposed method and reduces possible failure
in real-world testing [65,66]. Therefore the authors divided the
entire dataset into a 70% training, 10% validation, and 20% testing
set, respectively as shown in Table 3.

4.3. Experimental setup

All the code implementations in the study were performed
using the Tensorflow framework in python. Deep learning models
were trained on a workstation equipped with GPU Nvidia RTX
3080 with a compute capability of 8.60, 16 GB of GPU RAM, and
64 GB of RAM. All the models were trained for 150–250 epochs
to obtain accurate training, validation, and testing classification
accuracy.
12
4.4. Results and discussion

The first and most important step in constructing a deep
learning model is to define the network architecture. The authors
prefer to use pre-trained networks to extract deep features as
they have been initially trained on a large-scale ImageNet dataset.
Therefore, we save a lot of computational power when adjusting
weights to match our LC25000 dataset. In this manuscript, the au-
thors implemented 6 DCNN models namely VGG16, Xception, In-
ceptionResNetV2, ResNet152V2, DenseNet201 and EfficientNetB2
to extract deep features.

Before feeding the images to the models, the Image pre-
processing step is crucial. It plays a vital role in boosting a
classifier’s accuracy. With the help of image processing, noise can
be removed from the dataset. Furthermore, by basic adjustments,
we can highlight the features in an image more clearly so that our
classifier can learn it more efficiently, thus boosting accuracy.

In this manuscript, the authors have first removed the noise
from the dataset by using the NLM-Denoising Algorithm. Then
CLAHE and BCET are used for contrast enhancements equalizing
the histograms properly. With great precision and contrast limi-
tation, CLAHE performs histogram equalization in small patches
or small tiles, thus reducing the problem of noise amplification
too. After that, the automatic image thresholding was done with
the OTSU’s method.

For optimizing our DCNN models, the Adam optimizer is used
with an initial learning rate of 0.001, the exponential decay rate
for the 1st moment as 0.9, the exponential decay rate for the 2nd
moment as 0.999, and an epsilon value of 1e−7. Experimentation
has determined that the learning rate and other hyperparameters
are chosen as the most ideal settings as per Table 4. These hyper-
parameters are selected utilizing the Grid search technique for
model tuning and optimization. The batch size is set at 32, and the
model training is halted at 150 epochs. As a consequence, the best
model weights are preserved. To conserve the finest weights, the
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Algorithm 3: Algorithm for Majority Voting Based on
Condorcet’s Jury Theorem
Input:
δ1 : Training Set
δ2 : Validation Set
δ3 : Testing Set
α : number of classifiers.
β : number of predicted labels for δ3
ω∗ : initial weights of trained classifier.
Output: : Classification as Lung or Colon images.
begin:
while i ≤ α do

1. Train DCNN and compute the (ω∗)
2. Predict the output labels with trained DCNN in x
3. z = argmax f (x)

end
4. Initialize K arrays
while i ≤ α do

while j ≤ β do
5. If j == 0 then K0 + +

6. If j == 1 then K1 + +

7. If j == 2 then K2 + +

8. If j == 3 then K3 + +

9. If j == 4 then K4 + +

end
end
10. Initialize final score array f
while i = 1 ≤ β do

if K0[i] >= K1[i] and K0[i] >= K2[i] and K0[i] >= K3[i]
and K0[i] >= K4[i] :

f .append(0)
elif K1[i] >= K0[i] and K1[i] >= K2[i] and
K1[i] >= K3[i] and K1[i] >= K4[i] :

f .append(1)
elif K2[i] >= K0[i] and K2[i] >= K1[i] and
K2[i] >= K3[i] and K2[i] >= K4[i] :

f .append(2)
elif K3[i] >= K0[i] and K3[i] >= K1[i] and
K3[i] >= K2[i] and K3[i] >= K4[i] :

f .append(3)
elif K4[i] >= K0[i] and K4[i] >= K1[i] and
K4[i] >= K2[i] and K4[i] >= K3[i] :

f .append(4)
end
11. Calculate the final score between original labels and
final predicted labels based on Condorcet’s Jury Theorem.

Table 3
Dataset division.

Training
set

Validation
set

Testing
set

Total

Lung benign tissue 3500 500 1000 5000
Lung adenocarcinoma 3500 500 1000 5000
Lung squamous cell carcinoma 3500 500 1000 5000
Colon adenocarcinoma 3500 500 1000 5000
Colon benign tissue 3500 500 1000 5000
Total 17500 2500 5000 25000

authors employed early stopping callbacks. When a monitored
parameter stops improving, early stopping stops the training.

After the feature extraction, the feature vectors obtained are
rained with a Multi-Layer Perceptron network to perform classi-
ication. Here, the authors have done both 2 and 3-class classifica-
ion on lung and colon images separately. In addition, the authors
13
Table 4
Hyperparameters.
Hyper-parameters Values

Optimizer Adam
Dropout 0.5
Batch size 32
Exponential decay rate for 1st momentum (β1) 0.9
Exponential decay rate for 2nd momentum (β2) 0.999
Epsilon (ϵ) 1e−7
Initial learning rate (α) 0.001
Factor 0.1
Patience 10
Total no. of epochs 150

Fig. 8. Loss vs. Epochs curve for 2-class classification during the training
procedure.

have also done a 5-class classification on the combined dataset
to check the robustness of the proposed methods. Performing
classification on all 5 classes is more challenging than 2&3 classes
separately since the model has to learn to discriminate the fea-
tures of the lung from colon cancer. Table 5 reports the 2, 3, and
5-class accuracies of DCNN models.

In this manuscript, the authors proposed three different types
of ensembling methods, namely the Deep Stacking ensemble
model, Optimized Weights ensemble model, and Jury-based en-
semble model. The accuracy of the developed DCNN models is
related to the number of epochs. When the number of epochs
increases from 1 to 150, the accuracy value rises. The magni-
tude of loss is also dependent on the number of epochs. When
the number of epochs increases from 1 to 150, the loss value
decreases. Figs. 8 and 9 depicts the loss and accuracy curves of
the DCNN models on 2-class respectively i.e., Colon database only.
Similarly Figs. 10 and 11 reports the loss and accuracy curves on
3-class respectively i.e., Lung database only and Figs. 12 and 13
reports the loss and accuracy curve on both the combined dataset
of lung and colon respectively.

After training of DCNN models, i.e., our base learners, the
authors trained the meta learner, i.e., our ensemble model. Ta-
ble 5 shows the ensemble model accuracy of the Deep stacking
Ensemble Based approach. We picked our base learners from
different families since each classifier has its own set of benefits
merged when ensembled. The ensemble model is trained on
our validation set of only 10% of the whole data. Adjusting the
weights of a meta-learner using the same training set will almost
certainly lead to overfitting. A more robust strategy is utilizing
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Table 5
Validation accuracy (V.A) and Test accuracy (T.A) for the 2-class, 3-class and 5-class classification of 6 base classifiers and the
proposed ensemble methods.
Classifier 2-class 3-class 5-class

V.A T.A V.A T.A V.A T.A

InceptionResNetV2 99.90 99.90 97.73 98.30 98.32 98.05
Xception 99.80 99.90 98.27 98.50 98.28 98.22
VGG16 99.50 99.90 98.13 98.07 98.12 98.37
ResNet152V2 99.90 99.84 97.93 98.43 98.40 98.96
DenseNet201 99.90 99.90 99.40 99.20 99.40 99.44
EfficientNetB2 100 99.55 100 99.78 99.72 99.52

Deep Stacking ensemble model 100 99.90 99.78 99.80 99.60 99.64
Optimized Weights ensemble model – 99.92 – 99.83 – 99.78
Jury based ensemble model – 99.95 – 99.90 – 99.88
Fig. 9. Accuracy vs. Epochs curve for 2-class classification during the training
procedure.

Fig. 10. Loss vs. Epochs curve for 3-class classification during the training
procedure.
14
Fig. 11. Accuracy vs. Epochs curve for 3-class classification during the training
procedure.

Fig. 12. Loss vs. Epochs curve for 5-class classification during the training
procedure.
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Fig. 13. Accuracy vs. Epochs curve for 5-class classification during the training
procedure.

Fig. 14. Result of Condorcet’s Jury Theorem.

Fig. 15. Confusion matrix of the proposed Deep Stacking based ensemble
ethod.
15
Table 6
Optimized Weights with differential evolution optimization.
Method w1 w2 w3 w4 w5 w6

Model averaging 0.166 0.166 0.166 0.166 0.166 0.166
Differential evolution 0.0013 0.009 0.015 0.245 0.348 0.383

a holdout validation dataset that the ensemble members do not
see during training. 10% validation data is not a lesser data for
training since we only need to adjust the weights of the last layer.

One of the drawbacks of ensembling is that each classifier is
given equal weightage. We sometimes want extremely compe-
tent models to contribute more to an ensemble prediction and
less competent models to contribute less. So to penalize a less
accurate model and give importance to a more accurate model,
we assigned weights to each base model. Finding the optimal
weights is also a challenging task, and a random weight search
might be computationally intensive. In this case, a heuristic-based
approach can be highly effective. So, the authors have used a
differential evolution-based meta-heuristic search to search for
optimal weights to maximize the meta learner accuracy. The
optimal weights output by the search is shown in Table 6. By
assigning these weights to individual classifiers, the accuracy
improved by an 0.14% margin as shown in Table 5.

Searching for the optimal weights and training the meta
learner again is a computationally heavy task. Instead, the au-
thors have applied Condorcet’s Jury theorem to calculate majority
votes. In this procedure, only the base learner is trained and
validated once. The model accuracy improves significantly by
ensembling the top-performing models using Jury’s theorem.
According to Condorcet’s Jury Theorem, if each classifier votes
with a probability p > 1

2 then the final ensemble model’s chance
o reach a correct decision by majority vote approaches 1.

Table 7 proofs that when the no. of voters was 2, the accuracy
as 98.38% for the 5-class, and as we increased the no. of voters,
he accuracy also increased. According to the Jury theorem, when
voter with a high probability is added, the chances of getting

he decision right by a majority vote increase. So, from Table 7,
e can observe that when the ResNet152V2 is added to the
roup of voters, the accuracy of the 5-class increases by a margin
f 0.94%. But when ResNet152V2 is added to the voter’s group,
he accuracy of the 3-class decreases because a voter with low
robability is added. Hence, from Fig. 14 and Table 7, it has been
roved that in neural networks application, Ensembling N no. of
CNN classifiers based on Condorcet’s Jury Theorem, the accuracy
ncreases as the no. of DCNN classifiers with a high probability of
etting a decision correct increases.
From Figs. 15, 17 and 19, it can be observed that the models

re mostly making errors on 2nd and 4th classes only i.e., lung_aca
nd lung_scc. The reason behind it is that the images of lung_aca
nd lung_scc look very similar, and it can be seen in Fig. 1.
n Fig. 15, as we can see, the deep stacking ensemble-based
odel misclassifies 11 lung_aca images as lung_scc. But when the
eights are assigned to the base learners, the meta learner makes

ewer mistakes, misclassifying only 4 images. This error is further
educed when Condorcet’s Jury theorem-based majority voting is
onsidered. In the jury-based ensemble model, the false alarm
ate is very low; only 3 images are miss classified as shown in
ig. 19. Also in Figs. 16, 18 and 20, the ROC plots of Deep Stacking
ased ensemble model, weighted ensemble model and Jury based
nsemble model is shown.

.5. Comparative analysis

.5.1. Based on accuracy
Lung and Colon Cancer detection from LC25000 Histopatho-

ogical Image Dataset has been the subject of a lot of research.
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Fig. 16. Multi-labeled ROC of the proposed Deep Stacking based ensemble method.
Fig. 17. Confusion matrix of the proposed Differential Evolution based
optimization ensemble method.

Several authors have implemented and claimed the performance
of their models and approaches on this dataset. Some only used
the lung dataset to accomplish the 3-class classification colon
dataset to do binary classification, whereas some used the com-
bined dataset of lung and colon to perform 5-class classifica-
tion as well. As a result, direct comparisons between our model
and those studies are difficult. Therefore, the authors ran all
2-class, 3-class, and 5-class classifications on this dataset to com-
pare our model to previous research. As demonstrated in Ta-
ble 8, our proposed techniques in this research outperform sev-
eral state-of-the-art models and approaches used in previous
studies.

4.5.2. Based on efficiency
Convolutional neural networks have recently shown outstand-

ing results in various computer vision applications. But due to the
high computational cost of CNN models, it is crucial to choose the
models wisely based on both accuracy and efficiency. The training
time is calculated by multiplying the training time per epoch by
the number of epochs required to achieve the specified degree of
accuracy.
16
Table 7
Accuracy of Condorcet’s Jury theorem with ensembling N no. of classifiers.
No. of classifiers Classifiers 2-class 3-class 5-class

2 InceptionResNetV2
Xception

99.90 98.70 98.38

3 InceptionResNetV2
Xception
VGG16

99.90 99.56 98.52

4 InceptionResNetV2
Xception
VGG16
ResNet152V2

99.90 99.43 99.46

5 InceptionResNetV2
Xception
VGG16
ResNet152V2
DenseNet201

99.95 99.77 99.63

6 InceptionResNetV2
Xception
VGG16
ResNet152V2
DenseNet201
EfficientNetB2

99.95 99.90 99.88

If Xi, i = 1, . . . ,N is the training time taken for N no. of
classifiers and Yi is the training time for ensemble model, then
total time taken for training ensemble model based on Deep
Stacking Approach is shown in Eq. (41).

N∑
i=0

(Xi) + Yi (41)

If Xi, i = 1, . . . ,N is the training time taken for N no. of
classifiers and β is the time required for optimizing weights
through differential evolution algorithm then the total training
time taken for final ensemble model is calculated as Eq. (42).

N∑
i=0

(Xi) + β (42)

If Xi, i = 1, . . . ,N is the training time taken for N no. of
classifiers and α is the training time for calculating the final score
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Fig. 18. Multi-labeled ROC of the proposed Differential Evolution based optimization ensemble method.
Table 8
Comparative study between the proposed methods and the existing meth-
ods/models.
Papers 2-class

accuracy
3-class
accuracy

5-class
accuracy

Masud et al. [21] – – 96.33%
Adu et al. [22] – – 99.23%
Mangal et al. [23] >96% >97% –
Kumar et al. [24] – – 98.6%
Mesut Togacar [25] – – 99.69%
Muhammed Yildirim, Ahmet Cinar [31] 99.75% – –
Nishio et al. [32] – 99.43% –
Garg et al. [33] 98.50% 97.50% –
Talukder et al. [26] 99.05% 100% 99.30%
Li et al. [27] – – 98.96%
Lin et al. [28] – – 96.49%
Fan et al. [29] – – 99.44%
Mehmood et al. [30] – – 98.40%
Deep Stacking based ensemble model 99.90% 99.80% 99.64%
Optimized Weights ensemble model 99.92% 99.83% 99.78%
Jury based ensemble model 99.95% 99.90% 99.88%

based on Condorcet’s Jury Theorem then the total training time
taken for final ensemble model is calculated as Eq. (43).

N∑
i=0

(Xi) + α (43)

here α is negligible so we can ignore it and the total training
ime can be considered as shown in Eq. (44).
N∑
i=0

(Xi) + α ≈

N∑
i=0

(Xi) (44)

. Conclusion

Cancer is a life-threatening disease affecting millions of people
orldwide, with Lung and Colorectal cancer being the most
eadly, causing the most cancer-related deaths among other
ypes. This calls for the need to study the efficient detection of
17
Fig. 19. Confusion matrix of the proposed Condorcet’s Jury Theorem based
ensemble method.

these cancerous cells using artificial intelligence to assist hospi-
tals and patients with feasible treatment. Image preprocessing
techniques were performed on the LC25000 dataset for denois-
ing and enhancing the features before extracting them using
Deep CNN models to apply ensemble learning methods. In this
research, the authors proposed to use a metaheuristic algorithm
— Differential Evolution to optimizing the weights for better per-
formance of the ensemble technique, resulting in a classification
accuracy of 99.78% for 5-class. As the computational cost of this
method is relatively high, the authors proposed a novel ensemble
approach using majority voting based on Condorcet’s Jury theo-
rem. Besides, the authors also proved the theorem validity for
the ‘N’ number of classifiers in the case of neural networks. Con-
dorcet’s Jury Theorem-based ensemble model shows an accuracy
of 99.88% for 5-class classification.

The dataset used in this research is very well balanced and
homogeneous, which is unlikely in the real world. In the future,
the authors will also aim to test and study the performance of the
proposed approaches on other inconsistent datasets.
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Fig. 20. Multi-labeled ROC of the proposed Condorcet’s Jury Theorem based ensemble method.
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