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A B S T R A C T

Obstructive Sleep Apnea is a respiratory disorder that can be the origin of fatal heart and neurological health
concerns if left untreated. Despite the availability of diagnosis methods, it is still undiagnosed in most cases
due to the tiresome and impractical process of Polysomnography, the current medical standard test. In this
study, the authors have worked towards finding a viable approach for easy and early diagnosis of sleep apnea
using Electrocardiogram signals. The first model of this work was adapted from the Alexnet architecture with
modifications done according to the input digitized signals. A Long–Short term memory layer was added
to take care of temporal dependency in the dataset. It has shown an accuracy of 90.87%, specificity of
83.43%, and sensitivity of 95.48%. The hybrid architecture has 1.7 million parameters, much less than the
Traditional Alexnet architecture. The second model, ApneaNet, has been introduced, which shows remarkable
performance with an accuracy of 90.13%, specificity of 82.06%, and sensitivity of 95.14%, using only 0.9
million parameters which reduce the computational power significantly. The Proposed models have been
implemented on a dataset split into 35 recordings for training and testing, showing a trailblazing accuracy
of 95.69% and 96.37%, respectively. The authors proposed two deep learning models to detect sleep apnea
events using Electrocardiography signals which have demonstrated competitive results compared to the state-
of-the-art models at a low computational cost. We believe these methods have the potential to be successfully
and efficiently used for the real-time detection of Sleep Apnea.
1. Introduction

Obstructive Sleep Apnea (OSA) is one of the most prevalent types
of Sleep Apnea (SA). It is a potentially severe respiratory disorder that
intrudes the natural cycle of breathing in a person [1]. Caused by
limited or full impediments to the upper respiratory tract [2,3]. It is
not uncommon to see multiple SA-related symptoms and events occur
during a single Sleep cycle. In severe cases, it is known to cause brain
defects and other heart issues. Apart from these, SA also results in
higher blood pressure and congestive heart failure (CHF) and affects
the cognition of a person [4].

Other Symptoms caused by this syndrome are chronic snoring,
insomnia, gasping and breath-holding, unrefreshing sleep, and daytime
sleepiness [5]. The diagnosis of SA is quantified by a system known
as Apnea/Hypopnea index (AHI), and any patient scoring a score
> 5 in addition to additive symptoms is clinically diagnosed with the
syndrome. [6,7]. One of the most decisive and often used tests for SA
is Polysomnography (PSG). The PSG process analyzes by keeping the

∗ Corresponding author.
E-mail addresses: mailto.gaurav2001@gmail.com (G. Srivastava), pradhan.nitesh943@gmail.com (N. Pradhan).

test subjects in a laboratory for one or two sleep cycles and records
many physiological signals like ECG, Respiratory signals, EEG, SpO2,
etc. [8]. In addition, it also requires the patient to sleep in an actual
laboratory for 8 h a day and even multiple days to detect, which can
be cumbersome and uncomfortable for the patient leading to incorrect
data.

The results from PSG are fairly decisive and comprehensive. Still,
it usually creates an uncomfortable experience which causes irrational
exceptions in the data traced further, resulting in lowered accuracy
of the test. In addition, a PSG test requires a specific laboratory with
state-of-the-art medical machinery, which further expands capital costs
to the hospital/medical facility and the patient in question. Thus to
ease this process of diagnostics, many studies have been done taking
many signals as parameters like respiratory sound [9], SpO2 [10],
ECG [11]. These studies have given good results with deep learning
models. However, with a few variations, the proposed study further
improves.
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Sleep Apnea is often prevalent amongst adults, most commonly
middle-aged, but cases are also documented of children with ages
ranging from 2–6 years. Apart from the reduction in the quality of life,
another issue is that approximately 15%–20% of patients are medically
diagnosed with the condition. Without proper diagnosis and treatment
can lead to an increased risk and cause complications in cardiovascular
activities. The author’s motivation was to provide a simplistic yet accu-
rate solution towards increasing the number of adequately diagnosed
patients with genuine treatment, improving their quality of life, and
reducing heart complications in the future.

Deep learning is a sub-branch of Machine learning, which is con-
cerned completely with neural networks (inspired by the working and
functioning of neurons in our brain) [12,13]. Deep learning techniques
have been on a boost in the past few years due to their ability to
learn without help and show efficient results like never before. [14,15].
Deep learning techniques use the backpropagation method to adjust its
internal parameters as necessary, revealing detailed structure in large
data sets [13].

Convolution Neural Networks (CNNs) has demonstrated remarkable
results in medical imaging [16–18]. CNNs have also been used to
extract deep features from ECG signals, and since the ECG signals have
a temporal dependency, combining a CNN with LSTM can significantly
boost performance. With this intuition, the authors modified the tradi-
tional pre-trained network to work with 1-dimensional ECG data. Then
the authors experimented with various networks to determine the best-
suited network for the specific dataset. Furthermore, keeping in mind
the computational cost, the authors have also proposed a custom archi-
tecture — ApneaNet, which demonstrated remarkable performance in
terms of accuracy and inference time on the Sleep Apnea ECG database.
In addition, Convolutional Neural network based methods have shown
significant performance even on small datasets. Research in this field
for medical imaging has proven to give a state of the art results in both
accuracy and efficiency, thus justified as a foundation of our research
and study [19–22].

In this manuscript, the authors used deep learning approaches to
tackle this problem since it has been shown that deep learning produces
excellent results regarding disease detection. Furthermore, achieving
competitive accuracy while ensuring that the computational cost stays
reasonable was the primary driver for developing the custom model
architectures. The authors aim to utilize various Deep learning tech-
niques for the easy and efficient detection of Obstructive Sleep Apnea
by analyzing previously used methods and experimenting to produce
models with the best results.

The main contributions of this study can be summarized as follows:

1. The authors have experimented with and examined various
pre-trained networks such as AlexNet, Xception, ResNet50, and
DenseNet121 to extract features from ECG signals. Since the net-
works are trained for the Image dataset, the authors have mod-
ified their architecture in accordance with the 1-dimensional
dataset to use these networks on the SleepApnea ECG dataset.

2. After experimentation and analysis, the authors proposed a hy-
brid 1-dimensional CNN-LSTM model based on Alexnet’s archi-
tecture. The addition of the LSTM layer for sequential learning
has shown significant improvements in terms of accuracy.

3. The authors proposed a custom Deep CNN and LSTM-based
model — ApneaNet consisting of 13 layers taking efficiency
into account. ApneaNet showed significant improvement in the
computational cost compared to the other models balancing the
accuracy simultaneously.

4. To prove the effectiveness of the proposed model, a thorough
experimental assessment has been carried out, and the proposed
model is tested with several different hyper-parameters. The
authors experimented with different optimizers and inferred that
Adam and Adamax had shown the best performance on most
models compared to the other optimizers.
2

The remaining contents of the study can be summarized as fol-
lows. Section 2 is dedicated to analyzing the previous work of various
scholars in detecting Apnea events. Section 3 dives into the various
deep learning architectures examined and used for the study. Section 4
deals with the various Materials and methods and entails proposed
algorithms. Section 5 discloses and covers experimentation and the
results found from the aforementioned experiments.

2. Related works

OSA, a prevalent disorder in today’s time, has taken its fair share of
inputs towards its early-on diagnosis leading to uncomplicated cures.
To fully fathom the problem, the authors undertook an extensive anal-
ysis of the significant contributions made by various medical experts,
scientists, and scholars. As per the literature study, the authors used
two types of classification identical to the dataset: per-segment and per-
recording classifiers. In per-segment classification, each ECG recording
is studied minute by minute to ensure robustness and accuracy and to
validate the model, whereas in per recording, an entire recording is
split into 1 min ECG signals for the same. These insights and studies
were fruitful for our research as we gathered intuition and first-hand
approaches to the task and helped us propose an improved model for
its diagnosis. The works analyzed in this study are briefly explained in
the succeeding paragraph.

Using single-lead ECG data, the author suggested a technique based
on a Deep neural network (DNN) and Hidden Markov model (HMM)
[2]. SVM and ANN were the two types of classifiers employed. Given
the temporal dependence, HMM was utilized to increase classification
accuracy. Finally, a decision fusion approach was applied to improve
classification performance. The outputs of (DNN, SVM, HMM) and
(DNN, ANN, and HMM) are referred to as Decision Fusion. In the per-
segment OSA detection, almost 85% classification accuracy is achieved,
with a sensitivity of up to 88.9%. A Multiscale Dilation Attention and
1 Dimensional Convolution Neural Network [23] was used to extract
features. A weighted loss time-dependent loss function was applied to
solve the data imbalance problem. Furthermore, because there is a tem-
poral dependency between segments, the inclusion of HMM boosted the
Classifier’s performance. For per-segment OSA detection, the suggested
technique has an accuracy, sensitivity, and specificity of 89.4%, 89.8%,
and 89.1%, respectively. The Hidden Markov model [7] is coupled with
other classification machine learning models, SVM, LR, LDA, and KNN,
to boost classification accuracy. Per segment, OSA detection accuracy
was 86.2%, while per recording, classification accuracy was 97.1%.
S.Thompson [24] uses convolutional, max-pooling layers and a fully
linked Multilayer Perceptron (MLP) with a hidden layer and SoftMax
classifier to create a 1 Dimensional CNN model. The model has been
trained on five distinct datasets with varied window widths of 500,
1000, 1500, 2000, and 2500. For window sizes 500, 1000, 1500,
2000, and 2500, the accuracy obtained was 93.77%, 95.28%, 91.61%,
90.86%, and 90.46%, respectively.

Further, Wang T [4] uses modified LeNet-5 CNN architecture to
detect Sleep Apnea. Data preprocessing was done using a Hamilton
Algorithm to find the R Peaks and R-R Intervals. For per segment,
the specificity was 90.3%, the sensitivity was 83.1%, the accuracy
was 87.6%, and the AUC was 0.950. Per recording, accuracy was
97.1%; sensitivity was 100%, specificity was 91.7%, AUC was 0.996,
and Corr was 0.943. Mukherjee [25] uses three deep learning models
to employ different ensemble techniques which two were CNN-based
models, and one was a hybrid model of CNN and LSTM that had pre-
viously been suggested in the OSA detection area. Following that, four
ensemble approaches were chosen: majority voting, sum rule, Choquet
integral-based fuzzy fusion, and trainable ensemble using Multi-Layer
Perceptron (MLP). Using the MLP-based ensemble technique, the high-
est OSA detection accuracy of 85.58% was achieved. Using single-lead
electrocardiogram (ECG) inputs, A scalogram-based convolutional neu-
ral network (SCNN) [26] was suggested to identify obstructive sleep
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apnea. These scalograms were used to train a lightweight CNN model
that uses 32 𝑥 32 scalograms as input to extract deep features for

SA detection. In per-segment classification, an accuracy of 94.30%,
sensitivity of 94.30%, a specificity of 94.51%, and an F1-score of

5.85% was reached. For the UCDDB dataset, the model achieved an
ccuracy of 81.86%, a sensitivity of 71.62%, a specificity of 86.05%,
nd an F1-score of 69.63%.

Additionally, Chang XY [27] uses a one-dimensional CNN model
onsisting of ten similar CNN-based feature extraction layers, a flat-
ening layer, four identical classification layers (mostly built of fully
onnected networks), and a softmax classification layer. For per-minute
pnea detection, the suggested model obtains 87.9% accuracy, 92.0%
pecificity, and 81.1% sensitivity, while for per-recording classification,
t achieves 97.1% accuracy, 100% specificity, and 95.7% sensitivity.
unming Zhang [28] proposed an automated OSA event detection
ethod using a convolution neural network. A long short-term memory

LSTM) was added to learn the long-term dependencies, such as the
SA transition rules. A 10-second overlapping sliding window seg-
ents the raw ECG signals to detect a completed OSA event. The
roposed model exhibits the results: Cohen’s kappa coefficient of 0.92,
sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of

6.1% concerning the Apnea-ECG dataset. Wang L [29] introduced RR
ntervals with a residual network to detect per-segment apnea. A novel
pproach, dynamic autoregressive representation, was introduced to
epresent the RR intervals by convolutional layers. A residual network
ith 31 residual blocks is implemented in this study, and a basic CNN
ith seven convolutional layers is also implemented for comparison.
he residual network shows a performance of 94.4% accuracy, 93.0%
ensitivity, and 94.9% specificity for per-segment apnea detection. A
0-fold cross-validation process and then a blind-fold validation for
valuation were conducted to check the robustness of the proposed
odel. The influence of input data length was analyzed, and it con-

luded that the model required data with longer input length to get
etter results; 3-min NN intervals were suggested.

The other successful works related to the domain includes the study
onducted by Upadhyay et al. [30] was conducted to detect and classify
EG states to evaluate the effects of stress caused by external heat.
L algorithms such as Support Vector Machine (SVM) and Radial
asis Function Neural Networks (RBFNN) were used for the same. The
esults after experimentation favored SVM over RBFNN, with the SVM
odel showing an accuracy of 96.4% for chronic stress and 94.1%

or acute stress. The RBFNN model showed an overall classification
ccuracy of 87%. This study supports the development of effective
odels for detecting stress levels in humans using the EEG power

pectrum. The interesting work by Panda et al. [31] used hyperspec-
ral image processing for Chronic Myeloid Leukemia (CML) detection
y analyzing statistical distances such as Euclidean and Mahalanobis
istance methods to classify neutrophils in CML from those in healthy
lood samples. These distances were applied in the multidimensional
pace provided by hyperspectral images, which the authors state that
as been used for the first time in this case. Principal component anal-
sis was utilized to reduce dimensionality for computing efficiently.
fter experimentation, Euclidean distance was shown to be better in
ensitivity for detecting CML neutrophils, while Mahalanobis distance
as better for detecting healthy neutrophils. Borlea et al. [32] proposed
novel clustering technique — Unified Form that treats K-Means and

uzzy C-Means algorithms as a single algorithm, with the software
mplementation solutions designed and validated for the same on the
igTim platform. The other novelty feature was the partitional imple-
entation of the UF algorithm, which is designed to solve the issues
ith the processing of huge datasets, with the ability to overcome

he hardware limitations with scaling big data. For future work, the
uthors aim to extend the work to clustering algorithms, including
onlinear functionalities specific to fuzzy sets that will be considered
3

or performance improvement.
In the author’s analysis of these distinctive approaches to diagnos-
ing the disorder, however, we saw a striking pattern: an accuracy-
parameter tradeoff with each method. Models giving higher accu-
racy performance possessed an exorbitant amount of parameters re-
quired, while the models with lesser and more efficient parameterizing
hurt the accuracy of the proposed model. The authors further delved
into analyzing various architectures to maximize accuracy and min-
imize parameters, as covered in the next section (Section 3). It also
helped the authors to propose a novel approach based on the presented
architectures.

3. Background of networks

Deep learning techniques are widely employed in effectively pro-
cessing and identifying patterns from datasets [13]. Even with present-
day technological advances, it is expensive in both computing and
time requirements for constructing the models to solve the problems
at hand. In addition, the tremendous leaps in the skill they impart on
similar problems. Therefore It is a standard approach to use pre-trained
models as the initial template for computer vision and natural language
processing tasks; such a technique is called transfer learning [33]. There
are many pre-trained models available nowadays which are trained on
the Imagenet dataset [34] with 1000 output classes for classification
problems. A pre-trained model [35] has previously been taught to deal
with a similar problem. The authors start with a previously trained
model on another problem rather than starting from the ground up to
solve a homogeneous problem.

The traditional neural network architectures were designed to solve
the problem of image classification. However, the time-series data used
in our study is one-dimensional, unlike two-dimensional image recogni-
tion problems. So we have adopted the neural network architecture of
traditional Models, modified it according to our dataset requirements,
and used it in our study.

With the fast advancement of deep learning [13], a slew of new
neural network designs have emerged to tackle a wide range of jobs
and issues. Although there are countless neural network architectures,
the authors have used the following architectures for their study.

3.1. Alexnet

AlexNet can be defined as a convolutional neural network that
consists of convolutions, dense layers, and max-pooling as the basic
building blocks of its architecture [36]. The model consists of 8 lay-
ers, with five convolutional layers combined with max-pooling layers,
followed by three fully connected layers [37]. The input for the model
is RGB images. The activation function used in all the layers is ReLU,
and that in the output layer is Softmax. AlexNet uses Rectified Linear
Units (ReLU) because a neural network using the ReLU function had
shown a 25% error on the CIFAR-10 dataset, about six times faster than
one using the tanh function. AlexNet also grants multi-GPU training
by segregating one-half of the model’s neurons on a GPU and the
other half on another GPU. This helps optimize the model, improve
its performance, and reduce training time. A significant problem in
AlexNet can be overfitting due to the considerable number of param-
eters used [38]. Data augmentation and dropout layers are used to
reduce this effect.This problem of overfitting is commonly solved using
the above two strategies. Augmentation of data to increase the dataset
size or reduce the number of parameters using Dropout. In Dropout, to
introduce variations in the network, a predefined amount of neurons
are rendered inactive and void, thus reducing the number of parameters
used in training the model and reducing overfitting. By introducing
overlap, a reduction of error by 0.5% was observed, and overlapping

pooling makes the model less prone to overfit.
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3.2. Xception

Xception comprises 71 layers of deep learning architecture that can
be defined as a deep convolutional neural network that has taken inspi-
ration from the architecture; Inception [39]. However, the replacement
of the Inception modules takes place by depthwise separable convo-
lutions. It has an input size of 299 by 299. Separable convolutional
layers are more advantageous than traditional ones for optimal memory
and computational usage. This is because the standard convolution
transforms the image multiple times which takes up computational
power [40]. In Separable convolutions performance of depthwise con-
volutions followed by pointwise convolutions is employed relating to
a mix in the resulting output channels. While the implementation
of the same used in Xception, is the inverse of the original method
defined. It follows depthwise convolutions after a pointwise convolu-
tion. It changes the order in which the operations take place. This
minor change makes it so that there is no intermediate ReLU Non-
linearity. The Xception architecture [41] slightly outperforms Inception
V3 [42] on the ImageNet [34] dataset (which it was designed for)
and shows much better performance on a larger image classification
dataset, i.e., JFT dataset.

3.3. ResNet50

ResNet, also known as Residual Networks, is a classic neural net-
work used for various Computer Vision tasks [43]. A residual neural
network is an artificial neural network that stacks residual blocks
on top of each other to form a network. Resnet50, used in our re-
search, is the variant that can work with 50 neural network layers
and 48 Convolution layers along with 1 MaxPool and 1 Average Pool
layer [44]. This network was first introduced in the 2015 computer
vision research paper titled ‘Deep Residual Learning for Image Recog-
nition’ [43]. The breakthrough with ResNet was that they allowed the
training of extremely deep neural networks efficiently. Before ResNet,
such networks were difficult to train due to the problem of vanishing
gradients [45]. That is, when the gradient is back-propagated, it can
become extremely small due to repeated multiplication. This causes
saturation or even degradation of performance in networks with many
layers. ResNet tackles this problem by using identity mapping layers
and skip connection to add output from a previous layer to a later
one [46].

3.4. DenseNet121

DenseNet, or Densely Connected Convolutional Network, is a Deep
Learning model. It is based on upfront connections between every
successive layer while keeping the feature map size indifferent [47].
The model’s strength lies in the number of layers that can be increased
significantly, causing no harm to the optimization of the architecture.
The model relies on fewer parameters than conventional convolu-
tional Neural Networks (CNN) with more connections. It features 4
Blocks, namely Dense Blocks, Transition layers, Convolution layers, and
Pooling layers.

In the proposed study, the authors used a specific model of
DenseNet, the DenseNet-121, which comprises : 1 * 7 × 7 Convolution,
58 * 3 × 3 Convolutions, 61 * 1 × 1 Convolution, 4 Average pooling
Layers, and 1 Fully Connected Layer, which cumulates a total of 120
Convolutions and 4 Average pooling Layer [47]. In brevity, the network
has [6,12,24,16] dense layers, and Each dense block possesses a lineup
of units. Every unit consists of 2 convolutions processed by Batch
Normalization and ReLU activations. Each unit has a constant amount
of feature vectors, and the parameter is known as the growth rate.
The growth rate defines the transmission of new data in a layer. A
layer between the dense blocks also performs a down-sampling of the
4

features [48].
Table 1
Dataset description.

Subject
recordings

ECG files Group type Apnea events
(Mins)

Non-Apnea
events (Mins)

A01–A20 20 Apnea set 6250 3811

B01–B05 5 Borderline
Set

252 2060

C01–C10 10 Normal Set 12 4740
6514 10611

Table 2
Distribution of dataset.

Normal event Apnea event

Training Set (35) 210680 130050
Testing Set (35) 213830 13102

4. Materials and methods

4.1. Dataset formation

In this collection, the authors possess a total of 70 records split
into a 50% split between training and test (35 each). Each recording
is variable in length and ranges from 7 h to an estimated 10 h.
Per recording comprises a constant ECG signal converted to a digital
format. Apart from that, auxiliary signals are also considered, like
oronasal airflow and oxygen saturation [49]. The ECG sample rate was
measured at 100 Hz with a resolution rate of 12 bit. Every recording
is further subclassified into 1 min segments upon which, if abnormal
patterns arise, common apnea cases are labeled.

In addition, another type of classification occurred based on the
Apnea-Hypopnea Index (AHI) as three distinct classes, namely A, B, and
C, respectively, as mentioned in Table 1. The distribution of all apnea
and normal events in the training and test sets is shown in Table 2.

4.2. Dataset preprocessing

The dataset considered is the Physio-Net Sleep Apnea Dataset [49].
A logical approach towards autonomous feature extraction from the
dataset of 70 PSG recordings with quality Respiratory and ECG sig-
nals in terms of RR intervals and amplitudes. This process has been
illustrated in Fig. 2. T.Penzel [50] states that Preceding contributions
showed that variable heart rate does not quantify to give a good
algorithm; therefore, 1-minute segments are extracted for preprocessing
the dataset. R wave peak finding was implemented using Hamilton’s as
described in [51]. The Newly found R peaks were used to calculate
the Interval gap between the two consecutive R waves (RR Interval).
However, the RR intervals extracted are diagnostically obscure and can
hamper the training of the proposed model. To counter this, a median
filter was used [52]. Median Filter is a preprocessing technique to weed
out noise or unwanted artifacts from the data to give a smoother and
more accurate scenario that the data represents. A local filter is used to
curb the spikes and deviating artifacts while processing R-R Intervals.
The Fig. 1 shows the difference between the noise levels present in an
ECG Sample. Cubic interpolation was deployed to normalize the time
difference between RR intervals to give us the processed data ready for
training.

4.3. Training parameters

There is often a need for optimizing and improving deep learning
models. The use of many techniques can do this. The methods and
parameters most used for the best training performance of our models
have been explained in detail in this section. These include the Cross-
entropy loss function, Softmax activation function, and optimizers such

as Adam and Adamax.
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Fig. 1. Denoising using Local Median Filter in an ECG sample.
Fig. 2. Graphical abstract of the proposed work.
4.3.1. Loss function
While training machine learning models, loss or cost functions

optimize the model’s performance. The main objective is that the
loss should be minimized; the lower the performance, the better. To
optimize the classification model, the Authors implemented Cross-
Entropy loss, the most widely used loss function. It is used to optimize
classification models. The primary function of the Cross-Entropy is to
use the output probabilities obtained from Softmax Activation to mea-
sure the distances from the truth values. Keras provides the following
cross-entropy loss functions: binary, categorical and sparse categorical
cross-entropy loss functions [53]. The following mathematical equation
(1) explains the computation of the cross-entropy loss function:

𝐿CE = −
𝑛
∑

𝑖=1
𝑡𝑖 log

(

𝑝𝑖
)

, for n classes, (1)

where 𝑡𝑖 is the truth label and 𝑝𝑖 is the Softmax probability for the 𝑖th
class.

4.3.2. Optimizer
This research uses two different optimizers, i.e., Adam and Adamax.
Adam: Adam optimization [54] is a stochastic gradient descent

method that has its name derived from Adaptive Moment Estimation.
This is because it uses estimations of the first and second moments of
gradient descent to adapt and compute the individual learning rates
for each network weight. It is inherited from RMSProp and AdaGrad
and has their combined advantages. Adam optimization method is
computationally very efficient as it requires less memory even when
5

working with problems involving a large number of data and parame-
ters. Adam [55] is intuitively a combination of RMSProp and Stochastic
Gradient Descent with Momentum. It uses the moving average of the
gradient in place of the gradient itself, like in SGD with momentum and
it uses squared gradients to scale the learning rate, like in RMSProp.
Adam optimizer uses an exponentially decaying average of past gradi-
ents (mt) and past squared gradients (vt) as defined in Eqs. (2) and (3),
respectively. The term 𝛽1 and 𝛽2 are the forgetting factors for the mean
and non-centered variance of the gradient, respectively.

𝑚𝑡 = 𝛽1𝑚𝑡−1 +
(

1 − 𝛽1
)

[

𝛿𝐿
𝛿𝑤𝑡

]

(2)

𝑣𝑡 = 𝛽2𝑣𝑡−1 +
(

1 − 𝛽2
)

[

𝛿𝐿
𝛿𝑤𝑡

]2
(3)

where,

1. 𝜖 = a small +ve constant to avoid ’division by 0 ’ error when
(

𝑣𝑡− > 0
)

⋅
(

10−8
)

2. 𝜷1&𝜷2 = decay rates of the average of gradients in the above
two methods.

(

𝛽1 = 0.9 & 𝛽2 = 0.999)
3. 𝜶 - Step size parameter/learning rate (0.001)

Adamax: Adamax is an extension to the Adaptive Movement Esti-
mation (Adam) optimization based on the infinity norm. Adamax has
shown superior performance to Adam, especially in models with em-
beddings [56]. Adamax is an extension of the Adam version of gradient
descent that generalizes the approach to infinity norm and is designed
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to accelerate the optimization process on some problems. Eq. (4) shows
the mathematical representation of the Adamax optimizer:

𝑥(𝑡) = 𝑥(𝑡 − 1) − (𝛼∕(1 − 𝛽1(𝑡)))∗𝑚(𝑡)∕𝑢(𝑡) (4)

To review, there are three hyperparameters as :

1. 𝛼: Initial step size (learning rate), a typical value is 0.001.
2. 𝛽1: Decay factor for first momentum, a typical value is 0.9.
3. 𝛽2: Decay factor for infinity norm, a typical value is 0.999.

An initial learning rate (𝛼) of 0.001, the exponential decay rate for
the first moment (𝛽1) as 0.9, the exponential decay rate for the second
moment (𝛽2) as 0.999, and an epsilon value of 1e−7. These hyper-
parameters are selected utilizing the Grid search technique for model
tuning and optimization. While training, the learning rate was var-
ied continuously using the LRDecay, while the other hyperparameters
remained constant.

4.3.3. Batch normalization
Batch normalization is a technique for training deep neural net-

works that standardize the input to a layer for each batch [57]. The
input data collected for training is known as a batch; this normalization
process takes place in batches and not as a single input. Normalization
is a data pre-processing tool that brings numerical data to a common
scale without distorting its essence.

Batch normalization adds new layers that make the neural networks
efficient and more stable. Batch normalization layers allow every layer
of the network to learn independently. It is primarily used to normalize
the output of the previous layers, and it can be added at several points
between the layers of the model. Batch normalization is also used as a
regularization technique to overcome the problem of overfitting [58].

4.3.4. Activation function
In neural networks, the activation function specifies how the

weighted sum of input is transformed into the output from nodes in
a layer. The activation function for hidden layers is usually the same.
However, depending on the prediction made by the model, the output
layer would typically utilize a different activation function. Softmax
is a mathematical function that converts a set of integers into a set of
probabilities, with the probabilities proportional to the vector’s relative
values [59,60]. In Neural Network models, it is used as an activation
function to normalize the outputs of each class, changing them from
weighted sum values to probabilities that add up to one. The softmax
function is defined in Eq. (5).

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒

𝑧𝑗
(5)

where, 𝜎 = softmax, 𝑧 = input vector, 𝑒𝑧𝑖 = standard exponential
function for input, 𝐾 = number of classes in the multi-class, 𝑒𝑧𝑗 =
standard exponential function for output.

The sigmoid and tanh functions both saturate; high values snap
to 1.0, and small ones snap to −1 or 0. It becomes difficult for the
learning algorithm to continue adjusting the weights to enhance the
model’s performance once it reaches saturation. These non-linear acti-
vation functions fail to provide relevant gradient information to layers
deep in extensive networks. Due to the vanishing gradient issue, deep
(multi-layered) networks cannot successfully learn. Another non-linear
activation function that has grown in prominence in the deep learning
field is the ReLU function. Rectified Linear Unit is referred to as ReLU.

The ReLU function’s primary benefit over other activation functions
is that it does not simultaneously fire all the neurons. This signifies
that the neurons will not stop firing until the linear transformation’s
result is less than 0. Thus, we used the Relu activation function in
the hidden layers and the softmax activation function in the output
layer. The softmax function returns a vector of values that add up to
1.0 and represent the probability of class membership. The argmax
6

function, which returns 0 for all options and 1 for the selected option,
is connected to this. A winner-take-all function may provide an output
that resembles probability thanks to the ‘‘softer’’ form of argmax called
softmax. A vector of real numbers serves as the function’s input, and
its output is a vector of the same length with values that add to 1.0,
which is the probability.

4.4. Convolutional neural networks (CNNs)

Convolutional Neural networks [61,62] are increasingly being used
in the field of Deep learning for performing image recognition and
computer vision tasks that enable computers to extract meaningful
information from images, videos, signals, and other forms of input,
to predict their outcomes [63] successfully. They show superior per-
formance with image and audio signal inputs [23] compared to other
neural networks and have been used for the custom architecture in our
research. Convolutional Neural networks have three main layers:

1. Convolutional layer: This is the network’s core building block
and does most of the computational work. The main components are
input data, filter or kernel, and feature map. If the input data is a color
image, it would be a matrix of pixels in 3D, corresponding to RGB. The
feature detector, the filter, is passed over the receptive fields to check
if the feature is present, known as convolution. The more filters affect
the depth of the output. The filter then covers the image area, shifting
by a stride(number of pixels) each time. This process is repeated until
the entire image is covered. The final output obtained from the input
and filter dot products is known as feature map [64].

In a 2D convolution process, we re-estimate the value at a specific
input as a weighted average of inputs surrounding it. To acquire the re-
estimated value of every pixel, we consider the value of its neighbors
and compute the weighted average of these neighbors. This operation’s
mathematical formula is shown in Eq. (6).

𝑆𝑖𝑗 = (𝐼 ∗ 𝐾)𝑖𝑗 =
∑

𝑎=
⌊

− 𝑚
2

⌋

⌊

𝑚
2

⌋

∑

𝑏=
[

− 𝑛
2

⌋

𝐼𝑖−𝑎,𝑗−𝑏𝐾
𝑚
2
+ 𝑎, 𝑛

2
+ 𝑏 (6)

where,
K-Matrix that represents the weights assigned to pixel values. It has

two indices a,b - a denotes rows and b denotes columns.
I - Matrix containing the input pixel values.
Sij - The re-estimated value of a pixel at a location.
Each convolutional layer has a filter (𝑚1). The output Yl

i of layer l
consists of 𝑚𝑙

1 feature map of with size 𝑚𝑙
2 × 𝑚𝑙

3. The 𝑖 th feature map,
Yl
i, is calculated on the bases of Eq. (7).

𝑌 (1)
𝑖 = 𝑓

⎛

⎜

⎜

⎜

⎝

𝐵(𝑙)
𝑖 +

𝑚(𝑙−1)
𝑖
∑

𝑗=1
𝑘(1)𝑖,𝑗 × 𝑌 (𝑙−1)

𝑗

⎞

⎟

⎟

⎟

⎠

(7)

where 𝐵𝑙
𝑖 demonstrates the bias matrix and 𝐾 𝑙

𝑖,𝑗 the filter size.
In addition to CNNs, kernel convolution is a key component of

arious computer vision technologies. It is a technique in which we
pply a small number matrix called a kernel or filter on our image, then
ransform it using the filter’s values. This formula is used to compute
eature map values as shown in Eq. (8).

[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] =
∑

𝑗

∑

𝑘
ℎ[𝑗, 𝑘]𝑓 [𝑚 − 𝑗, 𝑛 − 𝑘] (8)

here, f stands for the input image and h stands for our kernel. The
esult matrix’s row and column indexes are denoted by m and n,
espectively.

We had create an output feature map using a convolution method.
n the convolution layer, each output feature map is blended with many
nput feature maps, as shown in Eq. (9).

𝑙
𝑗 = 𝑓

(

∑

𝑥𝑙−1𝑗 ∗ 𝑘𝑙𝑖𝑗 + 𝑏𝑙𝑗

)

(9)

𝑖∈𝑀𝑗
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where, 𝑥𝑙𝑗 is the current layer’s output, 𝑥𝑙−1𝑗 is the previous layer’s
output, 𝑘𝑙𝑖𝑗 is the current layer’s kernel, and 𝑏𝑙𝑗 are the current layer’s bi-
ses. A collection of input maps is represented by 𝑀𝑗 . The convolution
esults are then processed by a nonlinear activation function.

ReLU or Rectified Linear Unit is the non-linear activation function
sed here as shown in Eq. (10). ReLU does not activate all the neurons
t the same time.

ReLU 𝜙(𝑥) =
{

0 𝑥 ≤ 0
𝑥 𝑥 > 0

𝜙′(𝑥) =
{

0 𝑥 ≤ 0
1 𝑥 > 0

(10)

2. Pooling layer: By removing dominating characteristics, the pool-
ng layer reduces the number of parameters and processing resources.

filter is used over the full input in the pooling procedure, but the
ilter does not contain any weights. There are two forms of pooling:
ax pooling (where the pixel with the highest value is delivered to the

utput) and average pooling (average value within the receptive field
s sent to the output) [64].

The pooling layer is responsible for lowering the parameters by
ownsampling feature maps. It is applied throughout the layers in the
D volume. A popular pooling layer, as shown in Eq. (11), employs a
on-overlapping two cross two max filter with a stride of 2. A max filter
ould return the maximum value in the features inside the region.
𝑙
𝑗 = down

(

𝑥𝑙−1𝑗

)

(11)

The hyperparameters within this layer are:

1. Dimensions of spacial extent: the value of n which could be taken
for feature representation and mapped to a single value.

2. Stride: this is the number of horizontal and vertical steps that
the filter takes over the original matrix.

Number of output features in each dimension can be calculated
y use of the following formula, which has been explained in detail
n Eq. (12).

out =
[

𝑛in + 2𝑝 − 𝑘
𝑠

⌋

+ 1 (12)

here,
𝑛𝑖𝑛 : number of input features
𝑛out : number of output features
𝑘 : convolution kernel size
𝑝 ∶ convolution padding size
𝑠 ∶ convolution stride size
3. Fully Connected layer: In partially connected layers, the input

ata pixel values are not directly connected to the output layer. In
ontrast, in fully connected layers, each node in the preceding layer is
irectly connected to the output layer. While the preceding layers used
he ReLu function to classify data, this layer used the softmax activation
unction to get a probabilistic result [64].

The working of fully connected layer can be represented by Eq. (13),
f (l - 1) is a fully connected layer;

𝑌 (1)
𝑖 = 𝑓

(

𝑍(𝑙)
𝑖

)

with 𝑍(𝑙)
𝑖 =

𝑚(𝑙−1)
𝑖
∑

𝑗=1
𝑤(1)

𝑖,𝑗 × 𝑌 (𝑙−1)
𝑗

⎞

⎟

⎟

⎟

⎠

(13)

.5. Modified network architectures

The one-dimensional data in our time series dataset [50] utilized
n this work differed significantly from two-dimensional image classi-
ication problems, which is the input in all traditional Convolutional
eural Network Architectures. As a result, we had to modify our neural
etwork topologies to make them suitable for the given RR interval
nput (900, 2). A one-dimensional convolution operation was used
nstead of a two-dimensional convolution operation to extract features.
n the convolution layer, we have modified the proportions for strides
7

f the convolution layer and kernel size in accordance with the one-
imensional convolution layer. The pool size and strides were also
djusted in accordance with the one-dimensional max-pooling layer.
he long short-term memory (LSTM) layer [65] was added to the
etwork so that the model can learn short-term dependencies as OSA
ransition rules. Internal memory is stored in an LSTM network which
earns temporal information from segments of inputs through feedback
onnections. Furthermore, overfitting is possible due to the scarcity of
ata, so a dropout layer is also added. Finally, a softmax classifier with
wo output neurons is utilized, as shown in Fig. 2. In this research, the
uthors proposed two different Models - Modified 1D Alexnet + LSTM
nd ApneaNet with a learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and
n epsilon value of 1e−07.

Algorithm 1: Training Procedure of the Proposed Model
Input:
𝛿1 : Sleep Apnea Training set
𝛿2 : Sleep Apnea Testing set
𝑑𝑖 : the 𝑖th input sample of testing dataset.
𝐾 : total number of classes.
𝜇 : learning rate
𝜖 : no. of epochs
𝛽 : batch size
𝜔∗ : initial weights of trained classifier.
Output :
Classification as Apnea Event or Normal Event
predicted class probability vector
begin;
1. Set the input layer of the CNN architecture and feed the input
size

2. Set the head layers, CNN (Conv1D, Maxpooling1D, Flatten,
Dense, Dropout)

3. Set the further layers as LSTM
4. Initialize the CNN parameters : 𝜇, 𝜖, 𝛽
5. Convert each input in the training set into 900 x 2 in
accordance with the required input shape.

6. Train the CNN and compute the initial weights.
while 𝜂 = 1 to 𝜖 do

7. Randomly select a mini batch from (size : 𝛽) from training
set (𝛿1)

8. Forward propagation and compute the loss using Eq. (1)
9. Back propagate the error and update the weights using
Eq. (14) with adam optimizer

𝑊𝑛 = 𝑊𝑛 − 𝜂 ∗ 𝜕𝐽
𝜕𝑊𝑛

(14)

10. Repeat steps 7 to 9 until total loss become minimum.
end
while 𝑖 = 1 𝑡𝑜 𝛿2 do

11. Get the probabilistic output vector (𝐩𝑚
(

𝑑𝑖
)

=
{

𝑝𝑚,𝑘
(

𝑑𝑖
)}

for all 𝐾 classes where 1 ≤ 𝑘 ≤ 𝐾 ).
12. 𝑝𝑘

(

𝑑𝑖
)

=
∑𝑀

𝑚=1 𝑝𝑚,𝑘
(

𝑑𝑖
)

⋅𝑤𝑖,𝑘
𝑐
(

𝑑𝑖
)

= argmax1≤𝑘≤𝐾
{

𝑝𝑘
(

𝑑𝑖
)}

Get the output class label with the maximum class
probability for the 𝑖 th input sample.

end

4.5.1. Proposed model I - Modified 1D Alexnet + LSTM
The proposed hybrid 1DCNN-LSTM model is based on Alexnet’s

architecture and employs CNN layers for feature extraction, an LSTM
layer for sequence learning, and a softmax classifier for binary classifi-
cation. The proposed modified Alexnet Network architecture is shown
in Fig. 3. The Alexnet designed by Alex Krizhevskya contained eight
layers; the first five were convolutional layers, some followed by max-
pooling layers, and the last three fully connected layers [36]. Alexnet
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Table 3
Layerwise description of modified AlexNet.

Layer name Layer type Output shape Parameters

input_1 Input Layer 900 x 2 time series data [(None, 900, 2)] 0
conv1d Conv1D 96 Filter, 4, S = 1, ReLU (None, 223, 96) 2208
batch_norm Batch Normalization (None, 223, 96) 384
max_pooling1d MaxPooling1D pool size = 3, S = 2 (None, 111, 96) 0
conv1d_1 Conv1D 256 Filter, 5, S = 1, ReLU (None, 111, 256) 123136
batch_norm_1 Batch Normalization (None, 111, 256) 1024
max_pooling1d_1 MaxPooling1D pool size = 3, S = 2 (None, 55, 256) 0
conv1d_2 Conv1D 384 Filter, 3, S = 1, ReLU (None, 55, 384) 295296
batch_norm_2 Batch Normalization (None, 55, 384) 1536
conv1d_3 Conv1D 384 Filter, 3, S = 1, ReLU (None, 55, 384) 442752
batch_norm_3 Batch Normalization (None, 55, 384) 1536
conv1d_4 Conv1D 256 Filter, 3, S = 1, ReLU (None, 55, 256) 295168
batch_norm_4 Batch Normalization (None, 55, 256) 1024
max_pooling1d_2 MaxPooling1D pool size = 3, S = 2 (None, 27, 256) 0
lstm LSTM LSTM Layer of 256 units (None, 256) 525312
dense Dense Dense Layer of 2 units (None, 2) 514
Fig. 3. 3D representation of the Modified AlexNet.
Fig. 4. 3D representation of the ApneaNet.
employs the non-saturating ReLU activation function. The original
Alexnet architecture was designed for image data, but we had one-
dimensional time series data in our study, thus, we made the following
changes to use it for our research.

1. Modified all two-dimensional convolution layers to
one-dimensional convolution layers by using Conv1D, changing
8

strides and kernel size to a single digit number rather than using
a tuple.

2. Modified all two-dimensional max pooling layers to
one-dimensional max pooling layers by using Maxpooling1D,
changing pool size and strides to a single digit number rather
than using a tuple.
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Table 4
Layerwise description of ApneaNet model.

Layer name Layer type Output shape Parameters

input_1 Input Layer 900 x 2 time series data [(None, 900, 2)] 0
conv1d Conv1D 128 Filter, 8, S = 1, ReLU (None, 893, 128) 2176
batch_norm Batch Normalization (None, 893, 128) 512
max_pooling1d MaxPooling1D pool size = 4, S = 2 (None, 447, 128) 0
conv1d_1 Conv1D 128 Filter, 8, S = 1, ReLU (None, 440, 128) 131200
batch_norm_1 Batch Normalization (None, 440, 128) 512
max_pooling1d_1 MaxPooling1D pool size = 4, S = 2 (None, 220, 128) 0
conv1d_2 Conv1D 128 Filter, 8, S = 1, ReLU (None, 215, 128) 98432
batch_norm_2 Batch Normalization (None, 215, 128) 512
max_pooling1d_2 MaxPooling1D pool size = 3, S = 2 (None, 108, 128) 0
conv1d_3 Conv1D 128 Filter, 6, S = 1, ReLU (None, 103, 128) 98432
batch_norm_3 Batch Normalization (None, 103, 128) 512
max_pooling1d_3 MaxPooling1D pool size = 3, S = 2 (None, 52, 128) 0
conv1d_4 Conv1D 128 Filter, 4, S = 1, ReLU (None, 49, 128) 65664
batch_norm_4 Batch Normalization (None, 49, 128) 512
max_pooling1d_4 MaxPooling1D pool size = 3, S = 1 (None, 49, 128) 0
conv1d_5 Conv1D 128 Filter, 2, S = 1, ReLU (None, 48, 128) 32896
batch_norm_5 Batch Normalization (None, 48, 128) 512
max_pooling1d_5 MaxPooling1D pool size = 3, S = 1 (None, 48, 128) 0
conv1d_6 Conv1D 128 Filter, 1, S = 1, ReLU (None, 47, 128) 32896
batch_norm_6 Batch Normalization (None, 47, 128) 512
max_pooling1d_6 MaxPooling1D pool size = 2, S = 1 (None, 47, 128) 0
conv1d_7 Conv1D 128 Filter, 2, S = 1, ReLU (None, 46, 128) 32896
batch_norm_7 Batch Normalization ((None, 46, 128) 512
max_pooling1d_7 MaxPooling1D pool size = 2, S = 1 (None, 46, 128) 0
lstm LSTM LSTM Layer of 256 units (None, 256) 394240
flatten Flatten Flatten (None, 256) 0
batch_norm_7 Batch Normalization (None, 256) 1024
dense Dense Dense Layer of 32 units (None, 32) 8224
dense_1 Dense Dense Layer of 32 units (None, 32) 1056
dense_1 Dense Dense Layer of 2 units (None, 2) 66
3. Removed fully connected layers in the end and avoided flat-
tening layers to substantially reduce network complexity and
parameters.

4. Removed Dropout layers at the end. The dropout layer was
used in the original AlexNet because it had 60 million pa-
rameters, which caused a substantial overfitting problem,
but in proposed research removing it or retaining it does
not make any difference since the proposed model has very
few parameters compared to original Alexnet.

5. Added an LSTM layer just before the last layer for sequence
learning.

After making the following changes to the Alexnet architec-
ure, we were able to reduce the number of parameters signifi-
antly, and the proposed model now has 1.7 million parameters
nstead of the original Alexnet architecture, which had 60 million
arameters. The description of each layer is shown in Table 3.

Finally, the Adamax optimizer is used to optimize the model.
Adamax is a variant of Adam based on the infinity norm. Adamax
automatically adapts a different step size (learning rate) for each
parameter in the optimization problem. A categorical Cross-Entropy
loss function has been used.

4.5.2. Proposed model II - ApneaNet
A CNN comprises two essential components: feature extraction and

classification. The model’s initial layers may be thought of as descrip-
tors of image features, while the latter levels are related to particular
categories. Several convolution layers are used in feature extraction,
followed by max-pooling and an activation function. The classifier is
typically made up of fully connected layers and a softmax activation
function. If there are more no. of classes in the dataset, there will be
more no. of features for a model to learn. So the feature extraction
component of a CNN should be deeper and more complex to learn the
complex features.

Since there are two classes, a model has to discriminate between
9

them, so we have used eight convolutional, max pooling, and activation
layers. These parameters, such as no. of layers and no. of neurons, are
determined by performing extensive experiments balancing efficiency
and accuracy. We have kept increasing the number of layers until a
particular threshold so that model does not overfit. Since there are a
limited number of samples in our dataset, increasing the depth of the
network might overfit the model and result in neurons memorizing the
data.

The Proposed Model ApneaNet contains 13 layers, each having its
own set of parameters that may be learned. The model consists of
eight layers, starting with a layer that combines max pooling and batch
normalization, an LSTM layer; then, three fully connected layers are
used after flattening the layer. Except for the output layer, ReLU [66]
activation function is employed in each of these layers as shown in
Fig. 4.

The first two convolutional layers consist of 128 neurons, each of
kernel size of 8, followed by a Batch Normalization layer and max
pooling layer of pool size four and stride of 2. The following two
convolutional layers also consist of 128 neurons but with a kernel size
of 6, followed by the Batch Normalization layer and a max-pooling
layer of pool size three and stride of 2. Then one convolutional layer
with 128 neurons and kernel size four is added, followed by a Batch
Normalization layer and a max-pooling layer of pool size three and
stride of 2. Then, at last, three convolutional layers are there with a
kernel size of 2, followed by a Batch Normalization layer, one max
pooling layer with a pool size of 3, and the last two of 2 with a stride
of 2.

Further, an LSTM layer is added with 256 units. Then a flatten
layer is used to convert all data into a one-dimensional array. After
normalizing the inputs, two fully connected Dense layer consisting of
32 neurons is used, and then, at last, the layer is mapped with an
output layer consisting of two neurons; one is for Apnea Event, and
another is for Normal Event with a softmax activation function for
classification purposes. Unlike the networks pre-trained on ImageNet
Dataset, where the model has to classify between 1000 classes, we have
only two classes in our dataset. So, scaling down the dimensions of the
classification layer does not hamper the performance much. We have
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Fig. 5. Confusion matrices of different implemented models.
Table 5
Distribution of dataset in training and evaluation sets.

Training data Evaluation data

Evaluation 1 35 Recordings 35 Recordings
Evaluation 2 28 Recordings 7 Recordings

also determined these parameters by performing experiments balancing
both efficiency and accuracy. A categorical Cross-Entropy loss function
has been used. The description of each layer is shown in Table 4.

4.6. Proposed algorithm

The proposed algorithm is based on end-to-end training of the
proposed model. The notations used in the algorithm are described
here, with 𝛿1 and 𝛿2 referring to the training and testing datasets,
respectively. 𝜇 is the model’s learning rate, which indicates how rapidly
it adapts to the problem. It usually has a value close to zero. 𝜖 is the
total number of iterations (also known as epochs) for which the CNN
model has been trained. 𝛽 is another customizable hyper-parameter that
usually has the form of 2n.

The algorithm starts by establishing the model’s top input layer
(refer to step 2 of the algorithm) and adding it as the head layer to
the remaining six layers (refer to steps 1, 2, and 3 of the algorithm).
Then a for loop with several iterations ranging from 1 to the entire
number of iterations (𝜖) to train and update the weights using forward
and backward propagation (refer to steps 7–9 of the algorithm).

5. Experimental setup and results

5.1. Dataset division

Apnea-ECG Database comprises 70 records, 35 of which are for
training the model, and the rest 35 are for validating the model.
Researchers in the past have conducted their study on both the 70 data
records and only 35 training data records by splitting them into training
and validation sets. As a result, we also validated our models on both
Evaluation sets. The first consists of 35 training records and 35 testing
records, the second one of 28 training records from 35 training data
windows, and the rest 7 for validating the model, as shown in Table 5.
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Table 6
Results of Xception model in terms of its accuracy and parameters on different
optimizers.

No. Model Optimizer Training
accuracy

Testing
accuracy

Parameters

1 Xception Adam 99.99 88.89 20,714,330
2 Xception SGD 99.96 88.86 20,714,330
3 Xception RMSprop 99.99 88.44 20,714,330
4 Xception Adagrad 99.92 87.00 20,714,330
5 Xception Adamax 99.99 89.75 20,714,330
6 Xception Adadelta 99.12 87.53 20,714,330
7 Xception Nadam 99.99 88.69 20,714,330

Table 7
Results of ResNet50 model in terms of its accuracy and parameters on different
optimizers.

No. Model Optimizer Training
accuracy

Testing
accuracy

Parameters

1 ResNet50 Adam 100 90.12 16,038,466
2 ResNet50 SGD 99.92 89.22 16,038,466
3 ResNet50 RMSprop 99.97 89.61 16,038,466
4 ResNet50 Adagrad 99.80 85.94 16,038,466
5 ResNet50 Adamax 99.99 89.17 16,038,466
6 ResNet50 Adadelta 86.86 84.22 16,038,466
7 ResNet50 Nadam 99.99 89.35 16,038,466

Table 8
Results of DenseNet121 model in terms of its accuracy and parameters on different
optimizers.

No. Model Optimizer Training
accuracy

Testing
accuracy

Parameters

1 DenseNet121 Adam 99.88 88.14 86,956,386
2 DenseNet121 SGD 99.88 88.46 86,956,386
3 DenseNet121 RMSprop 99.96 88.65 86,956,386
4 DenseNet121 Adagrad 99.97 87.97 86,956,386
5 DenseNet121 Adamax 99.97 88.48 86,956,386
6 DenseNet121 Adadelta 99.75 84.77 86,956,386
7 DenseNet121 Nadam 99.89 88.91 86,956,386
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Fig. 6. AUC-ROC plots of different implemented models.
Fig. 7. Accuracy VS epochs of the top performing models.
Table 9
Results of Modified AlexNet + LSTM model in terms of its accuracy and parameters on different optimizers.

No. Model Optimizer Training
accuracy

Testing
accuracy

Parameters

1 Modified Alexnet + LSTM Adam 99.99 89.91 1,689,890
2 Modified Alexnet + LSTM SGD 99.99 89.80 1,689,890
3 Modified Alexnet + LSTM RMSprop 99.99 88.75 1,689,890
4 Modified Alexnet + LSTM Adagrad 99.93 87.72 1,689,890
5 Modified Alexnet + LSTM Adamax 100 90.87 1,689,890
6 Modified Alexnet + LSTM Adadelta 96.24 87.16 1,689,890
7 Modified Alexnet + LSTM Nadam 99.98 89.47 1,689,890
11
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Fig. 8. Loss VS epochs of the top performing models.
Table 10
Results of ApneaNet model in terms of its accuracy and parameters on different
ptimizers.
No. Model Optimizer Training

accuracy
Cross validation
accuracy

Parameters

1 ApneaNet Adam 99.95 88.83 903,298
2 ApneaNet SGD 99.98 88.66 903,298
3 ApneaNet RMSprop 99.73 88.46 903,298
4 ApneaNet Adagrad 99.65 85.79 903,298
5 ApneaNet Adamax 99.99 90.13 903,298
6 ApneaNet Adadelta 90.72 83.57 903,298
7 ApneaNet Nadam 99.95 90.06 903,298

5.2. Experimental setup

All the code implementations were implemented with the Tensor-
flow framework in python. The training is performed for small epochs
on personal computers with Intel(R) Core(TM) i7-6500U CPU 2.50 GHz,
Nvidia 940M GPU with compute capability 5.0, and 16 GB RAM. The
whole training part is performed on a workstation equipped with GPU
Nvidia RTX 3080, having a compute capability of 8.60 and 32 GB of
GPU RAM. Each Model was trained for 100–500 epochs to obtain the
best training and testing accuracy.

5.3. Results

To validate the proposed approach, the authors used two tried
and tested approaches per segment and per recording classification to
measure the accuracy of our trained models.

5.3.1. Per segment classification
Per segment evaluation analyzes each recording minute after the

minute is observed and evaluated by the model. This is crucial to es-
tablishing a robust model as it helps to predict SA in patients suspecting
of the same accurately. Per segment classification for SA detection
has been taken as the primary evaluation tool for comparing the
performances of various models chosen based on better efficiency.

Xception, ResNet50, DenseNet121, Modified Alexnet, and ApneaNet
have been experimented with different optimizers such as Adam, SGD,
RMSProp, Adagrad, Adamax, Adadelta, and Nadam. Xception has the
highest testing accuracy of 89.75% with Adamax optimizer, using
roughly 20.7 million parameters as shown in Table 6. ResNet50 has
demonstrated the highest testing accuracy of 90.12% with Adam opti-
mizer, using approximately 20 million parameters as shown in Table 7.
Next, DenseNet121 has the highest testing accuracy of 88.91% with
12

Nadam optimizer, using roughly 86.9 million parameters as shown in
Table 8, which shows that it takes the highest computational power.
The proposed model 1 (Modified Alexnet) has the highest testing
accuracy of 90.87% with Adamax optimizer, using just 1.7 million
parameters as shown in Table 9. Whereas, the Proposed model 2 (Ap-
neaNet) has a testing accuracy of 90.13% with Adamax optimizer with
even lesser computational cost, using just 0.9 million parameters as
shown in Table 10. The performance of these models is also evaluated
using their confusion matrices and AUC-ROC plots as illustrated in
Figs. 5 and 6.

These models have been trained and tested on a 35-35 split of the
PhysioNet dataset. The training of the networks has been performed
on 35 training samples, and rest 35 is kept for testing purposes. The
highest accuracy is achieved through the Proposed Model 1 (Modified
Alexnet), i.e., 90.87%. The authors also divided the 35 training data
further into 28-7 data splits of training and validation sets, respectively,
and then trained modified Alexnet and ApneaNet models on the divided
dataset, i.e., 28 data windows. The modified Alexnet model showed a
significant increment in the testing accuracy from 90.87% to 95.69%,
whereas ApneaNet is from 90.13% to 96.37%.

Taking 35 training sets as a complete dataset is unreliable because
there is already a shortage of data. However, the proposed model
ApneaNet showed a testing accuracy of 96.37% and sensitivity of
97.52% on the dataset of 35 (28-7 split) recordings which surpassed
all the proposed and widely accepted models as shown in Table 12.

Fig. 7 shows that the accuracy of various implemented models is
proportional to the number of epochs. When the number of epochs is
changed from 1 to 68, there is an uneven rise and drop in precision
value. For different implemented models, the accuracy remains con-
sistent at epoch 68. Fig. 8 further shows that the size of the loss is
proportional to the number of epochs. When the number of epochs is
changed from 1 to 70, there is an uneven rise and drop in loss value.
For different implemented models, the loss value remains constant at
epoch 70.

5.3.2. Per recording classification
Each recording refers to a collective set of ECG segments of a

duration of 1 min. Classification for SA depends on the recording as a
whole compared to per-segment classification. The classification occurs
on an Apnea/Hypopnea Index (AHI). Traditionally if AHI > 5, it is
classified as SA.

Per recording, classification was done on Xception, ResNet50,
DenseNet121, Modified AlexNet + LSTM, and ApneaNet, all having

accuracy around 97.14% as shown in Table 11.
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Table 11
Classification report of best performing models based on per segment and per recording.

No. Model Per segment
accuracy

Per recording
accuracy

Sensitivity Specificity

1 Xception 89.75 97.14 95.064 81.11
2 ResNet50 90.12 97.14 94.75 82.65
3 DenseNet121 88.48 97.14 92.74 81.61
4 Modified AlexNet + LSTM 90.87 97.14 95.48 83.43
5 ApneaNet 90.13 97.14 95.14 82.06
Table 12
Previous works comparison table.

Author Method Dataset
window

Accuracy
(%)

Sensitivity
(%)

Specitivity
(%)

Kunyang Li [2] Decision Fusion of (DNN, SVM, HMM) and (DNN, ANN, HMM ) 70 84.7 88.9 82.1
Q. Shen [67] (MSDA-1DCNN) with Hidden Markov Model 70 89.4 89.8 89.1
Song C [7] Hidden Markov Model 70 86.2 82.6 88.4
S. Thompson [24] 1D - CNN 35 95.28 96.12 97.30
Wang T [4] Modified LeNet-5 70 87.6 83.1 90.3
Mukherjee [25] MLP Based Ensemble Model 70 85.58 84.43 88.26
Fazla Rabbi Mashrur [26] Scalogram based CNN 35 94.30 94.30 94.51
Chang HY [27] 1D - CNN 70 87.9 81.1 92.0
Junming Zhang [28] CNN - LSTM 35 96.1 96.1 96.2
Wang L [29] A residual network with 31 residual blocks 35 94.4 93.0 94.9
Wang, T [68] Time Window ANN with MLP 70 87.3 85.1 88.7
Almutairi, H [69] CNN, CNN with LSTM and CNN with GRU 70 89.11 89.91 87.78
Dey, Debangshu [70] CNN 35 94.33 93.88 95.67
Wang et al. [71] CNN 70 82.36 81.78 83.93
Sharan et al. [72] CNN 70 83.29 82.80 87.39
Bernardini et al. [73] AIOSA (CNN + LSTM) 35 94.3 95.1 93.7
Tripathy et al. [74] KELM (Kernel Extreme Learning Machine) 70 76.37 75.34 74.64
Proposed model Modified ALexNet + LSTM 35 95.69 97.28 93.13
Proposed model Modified ALexNet + LSTM 70 90.87 95.48 83.43
Proposed model ApneaNet 35 96.37 97.52 94.53
Proposed model ApneaNet 70 90.13 95.14 82.06
C
W
C
d
D
V
N
r
S

D

p
w
1

D

o

6. Conclusion and future scope

The Intuition of RR intervals can only help in predicting Sleep apnea
caused due to neurological symptoms or cardiovascular symptoms.
However, for physical impediments in the upper respiratory tract,
RR intervals added with better respiration data can further help in
improving the accuracy of our model.

In this study, the authors have implemented Xception, ResNet50,
DenseNet121, and AlexNet model architectures on the SA PhysioNet
dataset to detect Obstructive Sleep Apnea. From this inference, they
have formulated their models as Modified AlexNet + LSTM and Ap-
neaNet, which show better accuracy and performance than the state-of-
art models with much less computational cost in terms of parameters.
Modified ALexNet + LSTM shows an accuracy of 90.87%, specificity
of 83.43%, and sensitivity of 95.48% using 1.7 million parameters
which are 10 to 50 times lesser than the other models. This model
has also been implemented on a 28-7 training and testing dataset split,
on which it has shown remarkable performance with an accuracy of
95.69%. ApneaNet has demonstrated an accuracy of 90.13%, specificity
of 82.06%, and sensitivity of 95.14%, using 0.9 million parameters
which require even lesser computational cost as shown in Table 11. The
accuracy of the proposed novel approach has proven to be the best on
both the original dataset (35-35) and split dataset (28-7), as compared
to the state-of-art.

The models proposed in this research can be further used to de-
tect cardiovascular diseases such as heart arrhythmia, conduction dis-
turbances, acute coronary syndromes, cardiac chamber hypertrophy,
enlargement, etc., through ECG signals.
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