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Abstract—The complexity of high-dimensional datasets
presents significant challenges for machine learning models,
including overfitting, computational complexity, and difficulties
in interpreting results. To address these challenges, it is essential
to identify an informative subset of features that captures the
essential structure of the data. In this study, the authors propose
Multi-view Sparse Laplacian Eigenmaps (MSLE) for feature
selection, which effectively combines multiple views of the data,
enforces sparsity constraints, and employs a scalable optimization
algorithm to identify a subset of features that capture the
fundamental data structure. MSLE is a graph-based approach
that leverages multiple views of the data to construct a more
robust and informative representation of high-dimensional data.
The method applies sparse eigendecomposition to reduce the
dimensionality of the data, yielding a reduced feature set. The
optimization problem is solved using an iterative algorithm
alternating between updating the sparse coefficients and the
Laplacian graph matrix. The sparse coefficients are updated
using a soft-thresholding operator, while the graph Laplacian
matrix is updated using the normalized graph Laplacian. To
evaluate the performance of the MSLE technique, the authors
conducted experiments on the UCI-HAR dataset, which com-
prises 561 features, and reduced the feature space by 10–90%.
Our results demonstrate that even after reducing the feature
space by 90%, the Support Vector Machine (SVM) maintains
an error rate of 2.72%. Moreover, the authors observe that the
SVM exhibits an accuracy of 96.69% with an 80% reduction in
the overall feature space.

Index Terms—Feature Selection, Laplacian Eigenmaps, Eigen-
decomposition, Activity Recognition

I. INTRODUCTION

In Machine learning (ML), the problem of high dimension-
ality is widespread, as datasets often contain many variables
or features. High dimensionality presents several challenges
for ML, including computational complexity, overfitting, and
difficulties in interpreting results [1]. For instance, Activity
Recognition (AR), which records accelerometer and gyroscope
measurements of human activities, is a prime example of a
high-dimensional dataset containing numerous features [2]. To
address this issue, feature selection techniques become crucial
in identifying a subset of informative features that capture the
essential structure of the data.

One prominent approach to feature selection is spectral
Embedding, which maps data into a low-dimensional space

by computing the eigenvectors of a Laplacian graph. Laplacian
Eigenmaps (LE) is a widely used feature selection method in
ML and data analysis. It seeks to preserve the local structure
of the data while reducing its dimensionality [3]. This is
achieved by constructing a graph based on pairwise distances
between data points and then computing the eigenvectors
of the Laplacian matrix associated with this graph [4]. The
Laplacian matrix is a positive semi-definite matrix that encodes
the graph’s similarity relationships between data points.

However, simple Laplacian eigenmaps are limited by vari-
ous factors, including scalability issues in high-dimensional
data, the inability to handle multiple data views, and a
lack of sparsity constraints that could enhance interpretability
and computational efficiency. To address these challenges,
we present a feature selection method - Multi-view Sparse
Laplacian Eigenmaps (MSLE). Our method combines multiple
data views, enforces sparsity constraints, and utilizes a scalable
optimization algorithm to identify a subset of features that
capture the essential data structure. The sparsity constraints en-
courage the Embedding to use only a small number of features
across all views, enhancing interpretability and computational
efficiency.

Our approach addresses the issue of high dimensionality
by identifying a subset of features common across views
and informative for the underlying structure of the data. The
sparsity constraints further reduce the dimensionality of the
Embedding, resulting in improved interpretability of the results
[5]. The optimization algorithm we employ scales effectively
to high-dimensional data and can handle multiple data views,
rendering it applicable across a wide range of applications. Our
approach’s term ”Sparse” refers to using sparsity constraints
in the optimization objective. Sparsity is a desirable feature in
feature selection as it reduces the number of features used in
the Embedding, enhancing interpretability and computational
efficiency [6]. In our method, the sparsity constraints are
enforced using the ℓ1-norm of the embedding matrix, which
encourages most entries to be zero.

In this study, we have modified Laplacian Eigenmaps to
include sparsity constraints in selecting the eigenvectors. The
sparsity constraint promotes selecting a smaller number of
eigenvectors that are most relevant to the task at hand. This
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constraint is enforced through regularization terms in the
optimization problem that computes the eigenvectors. Sparse
Laplacian Eigenmaps select a smaller set of eigenvectors,
resulting in a more interpretable representation of the data. The
selected eigenvectors correspond to the most critical features,
and their coefficients can be used to interpret the contribution
of each feature to the overall representation. Moreover, Sparse
Laplacian Eigenmaps select a smaller set of eigenvectors,
reducing the computational complexity of the method. This
can be especially advantageous for large datasets or when the
method needs to be applied in real time. Sparse Laplacian
Eigenmaps are less susceptible to data noise and outliers
than Laplacian Eigenmaps. The sparsity constraint helps to
exclude noisy or irrelevant features, improving the quality of
the resulting representation.

The primary contributions of our work are as follows:
1) We present Multi-view Sparse Laplacian Eigenmaps

(MSLE) for feature selection, which addresses the chal-
lenges posed by high-dimensional datasets. This method
utilizes sparse eigendecomposition and an iterative opti-
mization algorithm to construct a robust and informative
representation of the data.

2) We demonstrate the efficacy of our method in enhancing
the interpretability and computational efficiency of the
Embedding. The results show that MSLE can signifi-
cantly reduce the feature space while maintaining high
classification accuracy, achieving up to a 90% reduction
in the overall feature space.

3) We conduct experiments on the UCI-HAR Activity
Recognition benchmark dataset, which consists of 561
attributes.

The remainder of this manuscript is organized as follows.
Section II provides background information on Laplacian
Eigenmaps and feature selection. Section III details our pro-
posed method, Multi-view Sparse Laplacian Eigenmaps. Sec-
tion IV reports the results of our experiments, and Section V
concludes our work and discusses future directions.

II. LAPLACIAN EIGENMAPS

Laplacian Eigenmaps is a dimensionality reduction tech-
nique that seeks to preserve the local geometric structure of
the data [7]. It does this by constructing a graph from the data
points, where each point is a node, and the edges represent
the similarity between points.

Let X = x1, x2, . . . , xn be a set of n data points, and let
W be an n × n symmetric weight matrix that represents the
pairwise similarity between points. W (i, j) is a measure of the
similarity between points xi and xj and is typically defined
as a function of their Euclidean distance in the feature space.
The Laplacian matrix L is defined as L = D − W , where
D is a diagonal matrix whose entries are the row sums of
W . Intuitively, the Laplacian measures the smoothness of the
data manifold, and points that are close together in the feature
space will have similar values in the Laplacian matrix.

Laplacian Eigenmaps aim to find a low-dimensional embed-
ding Y = y1, y2, . . . , yn of the data points, where each yi is a

d-dimensional vector that represents the coordinates of point
xi in the embedded space [8]. This Embedding is found by
solving the following optimization problem:

min
Y

Tr
(
Y TLY

)
subject to Y TY = Id (1)

where Id is the d × d identity matrix, and Tr denotes the
trace of a matrix. The solution to this problem is given by
the eigenvectors corresponding to the d smallest eigenvalues
of the generalized eigenvalue problem:

Lv = λDv (2)

where λ is the eigenvalue, v is the eigenvector, and D is
the diagonal matrix defined above. The Laplacian Eigenmaps
method can be extended to handle multiple views of the data
by constructing a separate Laplacian matrix for each view and
then integrating them using a weighted combination. This is
known as Multi-view Laplacian Eigenmaps.

A. Spectral Embedding for Non-Linear Dimensionality Reduc-
tion

Spectral Embedding is a family of algorithms for non-linear
dimensionality reduction based on the spectral decomposition
of a graph Laplacian [9]. In this approach, the data is first
transformed into a graph by computing pairwise similarities
between data points. This graph is then represented by its
Laplacian matrix, which captures the graph’s topology.

Let X = x1, x2, . . . , xn be a set of n data points, and
let W be an n × n symmetric affinity matrix that represents
the pairwise similarities between points. The affinity matrix
can be defined in various ways depending on the application.
For example, it could be a Gaussian kernel function of the
Euclidean distances between points:

W (i, j) = e−
∥xi−xj∥2

2σ2 (3)

where σ is a parameter that controls the width of the kernel.
The Laplacian matrix L is then defined as L = D − W ,

where D is a diagonal matrix whose entries are the row sums
of W . This matrix captures the geometry of the graph and is
used to perform spectral decomposition.

The goal of spectral Embedding is to find a low-dimensional
representation of the data points that preserves the geometric
structure of the graph. This is achieved by computing the
eigenvectors of the Laplacian matrix corresponding to the d
smallest eigenvalues and using them to define the coordinates
of the embedded points. Specifically, let vi be the i-th eigen-
vector of L corresponding to the i-th smallest eigenvalue λi.
The coordinates of the j-th data point in the embedded space
are given by:

yj = (v1(j), v2(j), . . . , vd(j)) (4)

where vi(j) denotes the j-th element of the i-th eigenvector.
The Laplacian matrix is normalized to ensure that the Em-
bedding is well-scaled. Two standard normalization methods
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are symmetric normalization and random walk normalization,
which are defined as:

Sym(L) = D−1/2LD−1/2

RW(L) = D−1L
(5)

respectively, where D−1/2 and D−1 are the diagonal ma-
trices with the reciprocal square roots and the reciprocals of
the diagonal entries of D, respectively.

III. PROPOSED METHOD - MULTI-VIEW SPARSE
LAPLACIAN EIGENMAPS

Given a dataset X = [x1, x2, ..., xn] ∈ Rd×n with n
samples and d features, we seek to identify a subset of k
features that capture the essential structure of the data. Our
approach, Multi-view Sparse Laplacian Eigenmaps (MSLE),
combines multiple data views and enforces sparsity constraints
to identify the most informative features. We construct a graph
G = (V,E), where V is the set of vertices corresponding
to the n samples, and E is the edges representing pairwise
relationships between samples.

We begin by computing the graph Laplacian L associated
with the graph G, defined as L = D − W , where D is the
degree matrix and W is the weighted adjacency matrix. The
ith diagonal element of D is defined as Dii =

∑n
j=1 Wij , and

the (i, j)th element of W is the similarity between samples i
and j, e.g., the Gaussian kernel Wij = exp(− 1

2σ2 ||xi−xj ||2).
We then compute the eigenvectors Uk = [u1, u2, ..., uk] and
eigenvalues λk = [λ1, λ2, ..., λk] of L.

To enforce sparsity constraints, we add an ℓ1-norm penalty
term to the objective function, resulting in the following
optimization problem:

min
Z

(
k∑

i=1

λi |x− Ukzi|2 + α |zi|1

)
(6)

where zi is the ith column of Z ∈ Rk×n, and α is a
hyperparameter that controls the degree of sparsity. The first
term minimizes the reconstruction error between the original
data and the low-dimensional Embedding, while the second
term encourages sparsity in the Embedding by penalizing
nonzero entries.

We use the accelerated proximal gradient method with a
backtracking line search to solve the optimization problem.
This method iteratively updates the variable Z as follows:

Z(t) = argminZ
(∑

i = 1kλi |x− Ukzi|2

+α

∣∣∣∣z(t−1)
i +

1

β
(UT

k (x− Ukz
(t−1)
i ))

∣∣∣∣
1

)
(7)

where t is the iteration number and β is the Lipschitz
constant of the gradient of the ℓ1-norm penalty term. This
method has a convergence rate of O(1/t2).

Once we obtain the embedding matrix Z, we select the k
most informative features by thresholding the absolute values

of the entries in zi. The selected features correspond to
the columns of Uk with the largest absolute values in the
corresponding rows of Z.

The goal of Multi-view Sparse Laplacian Eigenmaps is to
find a low-dimensional representation of the data that preserves
the structure of the combined Laplacian matrix while select-
ing a subset of features that are common across views and
informative for the underlying structure [10]. This is achieved
by adding sparsity constraints to the Laplacian Eigenmaps
objective function, encouraging the Embedding to use only a
few features [11]. Specifically, the objective function is given
by:

minimize trace
(
Y TLY

)
+ λ∥Y ∥11 (8)

where Y is the n×d embedding matrix, d is the dimensionality
of the embedded space, λ is a sparsity parameter, and || ·
||11 denotes the ℓ1-norm of the matrix. The sparsity constraint
encourages Embedding to use only a small number of features
across all views.

A. Algorithm

This algorithm 1 computes the multi-view Laplacian matrix
by summing the Laplacian matrices of each view, and com-
putes a sparse weight matrix that maximizes the agreement
between the views. It then computes the eigenvectors and
eigenvalues of the multi-view Laplacian matrix and selects
the top k eigenvectors as the selected features. The algorithm
returns both the weight matrix and the selected features. The
algorithm includes regularization parameters αi for each view,
which can be chosen using cross-validation.

Algorithm 1: Multi-view Sparse Laplacian Eigenmaps
Input: X1, X2, . . . , Xm: m views of the dataset, k:

number of selected features,
{α1, α2, . . . , αm}: regularization parameters.
Output: W : weight matrix, F : selected features.
1: Compute the pairwise similarity matrices Si for

each view i.
2: Compute the Laplacian matrices Li for each view i.
3: Compute the diagonal matrices Di for each view i.
4: Compute the multi-view Laplacian matrix L as
L =

∑m
i=1 Li.

5: Compute the multi-view diagonal matrix D as
D =

∑m
i=1 Di.

6: Compute the sparse weight matrix W by solving
the following optimization problem:

min
W

m∑
i=1

|Xi −XiW |F 2 +

m∑
i=1

αiTr(W
TLiW )

7: Compute the eigenvectors U and eigenvalues Λ of
the generalized eigenvalue problem LU = DUΛ.

8: Select the top k eigenvectors corresponding to the k
smallest eigenvalues and stack them into the matrix
F .

9: Return W and F .
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset Used: UCI-HAR

The UCI-HAR dataset comprises recordings of 30 indi-
viduals carrying a smartphone fitted with inertial sensors on
their waist, as they engaged in their daily activities [12]. The
participants, aged between 19 and 48 years, were instructed
to perform six activities, including walking, sitting, and lying
down, while holding a Samsung Galaxy S II smartphone.
The smartphone’s accelerometer and gyroscope recorded 3-
axial linear acceleration and 3-axial angular velocity at a fixed
sampling rate of 50Hz. The activities were manually annotated
using video recordings [13], and the resulting dataset was
randomly partitioned into training and test sets, with 70% of
the participants assigned to the training set as shown in table
I.

TABLE I
DESCRIPTION OF THE UCI-HAR DATASET, INCLUDING THE NUMBER OF

TRAINING AND TESTING SAMPLES AVAILABLE FOR EACH ACTIVITY.

Activity Total no. of
Samples

Training
Samples

Testing
Samples

LAYING 1944 1407 537
STANDING 1906 1374 532

SITTING 1777 1286 496
WALKING 1722 1226 491

WALKING UPSTAIRS 1544 1073 471
WALKING DOWNSTAIRS 1406 986 420

10299 7352 2947

B. Experimental Settings

The experiments in this study were carried out using a 12th
Gen Intel(R) Core(TM) i7-1265U processor with 32 GB of
memory.

C. t-Distributed Stochastic Neighbor Embedding (t-SNE)

To obtain a more comprehensive understanding of the high-
dimensional time series data used in our study, we applied the
t-SNE method [14]. As depicted in figure 1, the complexity of
the data in its original form posed a challenge to comprehend
its underlying structure.

The t-SNE algorithm was employed on the UCI-HAR data,
with perplexity values ranging from 5 to 50, for 1000 itera-
tions, as shown in figure 2. The visualization revealed that at a
perplexity of 50, all features except STANDING and SITTING
were readily separable. Thus, the model may be confused
between the standing and sitting classes, leading to prediction
errors. Additionally, some WALKING features overlapped
with WALKING UPSTAIRS features, indicating the potential
for prediction inaccuracies in this area. Subsequently, figure 3
will provide further visual evidence to support these observa-
tions. By utilizing t-SNE and considering the perplexity value,
valuable insights into the data’s characteristics can be obtained,
which can inform the selection of an appropriate machine
learning algorithm and enhance the model’s performance [15].

Fig. 1. 3 dimensional view of the UCI-HAR dataset.

Fig. 2. Visualization of high-dimensional data in low dimension using the
t-SNE algorithm on the UCI-HAR dataset.

TABLE II
REPORTED METRICS OF 12 DISTINCT MACHINE LEARNING CLASSIFIERS

WHEN TRAINED ON UCI-HAR DATASET.

Classifier Accuracy Precision Recall F1-Score
KNN 80.9 81.8 81.0 81.0

Gaussian Naive Bayes 77.0 79.3 77.0 76.8
Decision Trees 85.2 85.3 85.2 85.2
Random Forest 92.0 92.2 92.1 92.1

Extra Trees 94.2 94.4 94.3 94.2
SVM 93.0 93.3 93.1 93.0

Multi-layer Perceptron 93.8 94.4 93.9 93.9
XGBoost 93.4 93.5 93.4 93.4

LightGBM 93.1 93.3 93.1 93.1
CatBoost 92.7 92.9 92.8 92.8

LDA 96.43 96.5 96.4 96.4
QDA 70.4 80.0 70.4 69.8
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TABLE III
TEST ACCURACIES OF 12 DISTINCT MACHINE LEARNING CLASSIFIERS WHEN TRAINED ON REDUCED FEATURE SUBSETS OF RANGE 10% – 90%.

Classifier 10% 20% 30% 40% 50% 60% 70% 80% 90%
KNN 68.44 74.90 79.32 83.93 86.84 90.19 90.43 92.81 91.94

Gaussian Naive Bayes 56.06 62.76 63.05 64.02 66.69 71.79 76.45 81.35 80.87
Decision Trees 83.54 82.76 84.75 83.73 84.07 84.22 84.27 85.09 85.38
Random Forest 91.89 92.08 91.50 91.89 92.57 92.37 92.37 93.59 91.31

Extra Trees 91.60 91.74 91.65 92.86 93.30 92.86 92.66 94.17 91.65
SVM 96.74 97.08 96.60 97.13 97.23 97.18 96.50 96.69 94.02

Multi-layer Perceptron 91.16 91.50 92.28 92.18 92.42 92.52 91.94 89.85 87.96
XGBoost 95 95.24 95.19 94.56 95.04 95.97 95.19 95.38 93.68

LightGBM 94.32 95.04 94.95 94.70 95.48 95.38 94.80 95.33 93.54
CatBoost 95.29 95.63 95.14 95.48 95.38 95.77 95.19 95.24 93.39

LDA 94.70 95.43 94.56 95.29 94.95 94.90 93.49 93.30 89.07
QDA 83.83 82.96 83.20 83.93 84.95 84.17 83.83 85.67 83.44

Fig. 3. Confusion Matrix for the trained SVM on 80% features.

D. Classification Performance and MSLE Analysis

To assess the efficacy of the suggested approach, we em-
ployed MSLE based feature selection method on the UCI-
HAR dataset. We conducted experiments to assess the perfor-
mance of various classifiers with reduced feature dimensions.
Initially, we applied 13 machine learning classifiers to the
complete feature set to obtain a general idea of their per-
formance on time-series data. Linear Discriminant Analysis
(LDA) emerged as the top performer, achieving an accuracy
of 96.43% on the UCI-HAR dataset. Support Vector Machines
(SVM) and Boosting models also demonstrated promising
results. The accuracy, precision, recall, and f1-score of all the
evaluated classifiers are presented in table II.

Subsequently, we progressively reduced the feature sets
using MSLE and assessed the robustness of the method. The
results in table III indicate that the accuracy of the classifiers
remained relatively stable as the feature dimensions were
reduced from 10% to 90%, with some classifiers even demon-
strating increased accuracy. This increase can be attributed

to the fact that not all features contribute equally to the
classification task, and some features may even be irrelevant or
redundant. By reducing the number of features, the model can
focus on the most informative and relevant ones, improving
classification performance.

Fig. 4. Receiver Operating Characteristic curve for the trained SVM on 80%
features.

However, it is important to note that reducing the feature
dimensions excessively can lead to underfitting, where the
model is too simplistic and fails to capture the complexity
of the data. Therefore, it is crucial to strike a balance between
feature reduction and model complexity and to carefully
evaluate the model’s performance at each stage of the feature
selection process. Reducing feature dimensions by 40-50%
can be a suitable approach to mitigate the high dimensionality
problem while ensuring computational efficiency.

For instance, the K-Nearest Neighbors (KNN) classifier
achieved an accuracy of 68.44% with 10% of the features
reduced, which increased to 91.94% with 90% of the features
reduced. However, it is possible that the model may be
underfitting with such a high feature reduction. Conversely,
some classifiers, such as the SVM and XGBoost, demonstrated
consistently high accuracy across all feature dimensions. The
SVM classifier achieved an accuracy of 96.74% with 10% of
the features, which peaked at 97.23% with 50% of the features
before declining to 94.02% with 90% of the features as shown
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in table III. Similarly, the XGBoost classifier achieved an
accuracy of 95.00% with 10% of the features, which peaked at
95.97% with 50% of the features before declining to 93.68%
with 90% of the features. The confusion matrix and ROC plots
of the trained SVM with an 80% feature reduction are depicted
in figures 3 and 4, respectively.

The results demonstrate the effectiveness of the MSLE tech-
nique in reducing the dimensionality of the UCI-HAR dataset
while maintaining or improving the classification accuracy of
various classifiers.

E. Analysis on Computational Efforts

To reduce the dimensionality of the data, MSLE applies
sparse eigendecomposition to the Laplacian matrix, which
yields a small set of eigenvectors that capture the most impor-
tant and informative features of the data. These eigenvectors
serve as the reduced feature set, which can be used for classi-
fication tasks. In our experiments, MSLE has demonstrated
efficiency and scalability, making it a promising technique
for real-world scenarios where processing large amounts of
high-dimensional data. The runtime of the MSLE technique is
dependent on the size of the dataset and the number of views
utilized to construct the graph. In the experimental analysis
conducted on the UCI-HAR dataset, MSLE took an average
of 6 minutes and 13 seconds to reduce the feature dimensions
using all six data views. However, the runtime can be further
optimized by decreasing the number of views or employing
parallel computing techniques.

V. CONCLUSION

Dealing with high-dimensional data presents challenges in
modeling and may lead to sparsity issues. In this study, we
present Multi-view Sparse Laplacian Eigenmaps (MSLE) for
feature selection, which addresses the challenges presented by
high-dimensional datasets. We demonstrate the effectiveness
of the MSLE technique through experiments on the UCI-HAR
dataset, where it significantly reduces the feature space while
maintaining high classification accuracy, achieving up to an
80% reduction in the overall feature space.

MSLE utilizes multiple views of the data, sparse eigen-
decomposition, and an iterative optimization algorithm to
construct a robust and informative representation of high-
dimensional data. These features make MSLE a promising
approach for practical applications where high-dimensional
datasets are prevalent. The results of this study have signif-
icant implications for the field of machine learning, as they
demonstrate the potential of MSLE to overcome challenges
posed by high-dimensional datasets, such as overfitting and
computational complexity. Additionally, MSLE has the poten-
tial to contribute to the development of more efficient and
interpretable machine learning models.

Future research could investigate the effectiveness of MSLE
on other high-dimensional datasets and the potential of inte-
grating it with other feature selection techniques to further
improve classification performance. Furthermore, the appli-
cability of MSLE to other domains, such as social network

analysis and natural language processing, could be explored.
Evaluating the performance of MSLE on datasets with dif-
ferent data types and structures could also provide insights
into its versatility and effectiveness. Finally, the development
of new optimization algorithms and techniques could enhance
the scalability of MSLE for processing large datasets.
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