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Abstract
Myocardial infarction (MI) and cardiac arrhythmias remain leading causes ofmortalitywithin
cardiovascular diseases. Accurate and timely diagnosis using electrocardiogram (ECG)
signals is crucial, yet manual ECG interpretation is prone to error and time-consuming.
Addressing these challenges, the authors propose a novel deep neural network architec-
ture for efficient and accurate detection and classification of both MI and arrhythmia from
ECG signals. Our model strategically fuses a modified AlexNet for robust feature extrac-
tion with Long Short-Term Memory and Gated Recurrent Units networks to exploit the
temporal dependencies inherent in ECG data. Fusion techniques combine the insights from
these diverse sub-models, aiming to reduce generalization errors and surpass the perfor-
mance of single-model approaches. Extensive experimentation on the MIT-BIH and PTB
datasets demonstrates superior accuracy (98.51% and 99.97%, respectively) and reduced
training time compared to other pre-trained networks. Robustness is validated through 10-fold
cross-validation, yielding average accuracies of 98.76% and 99.48%. Our findings highlight
the potential of this computationally efficient ensemble model for practical clinical imple-
mentation, enabling more accurate and timely diagnosis of life-threatening cardiovascular
conditions.
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1 Introduction

Cardiovascular disease (CVD) encompasses various conditions affecting the heart and blood
vessels [1]. It is a leading cause of globalmortality, responsible for approximately 17.9million
deaths each year [2].Myocardial infarction (MI), also known as a heart attack, and arrhythmia
are among themost common forms of CVD.MI occurs due to blockage in the heart’s arteries,
cutting off blood flow to the heart muscle [3]. This can cause rapid tissue damage and, if
not addressed quickly, may be fatal. Notably, MI constitutes a significant portion of CVD
cases, approximately 85% [4]. Furthermore, MI can lead to cardiac arrhythmia, an irregular
heartbeat potentially resulting in major complications like stroke or heart failure [5]. Early
diagnosis and treatment are essential for managing CVDs and minimizing their risks.

Arrhythmia is a medical condition where the heart’s normal rhythm is disrupted. This
disruption stems from irregular electrical impulses, causing the heart to beat too slowly, too
quickly, or erratically. If severe, arrhythmia can hinder the heart’s ability to pump blood
effectively, potentially leading to organ damage or failure [6]. As a serious health concern,
arrhythmia requires prompt medical attention for diagnosis, management, and prevention
of complications. While the condition’s prevalence and severity vary, effective treatments
exist. Continued research is crucial to deepen our understanding of arrhythmia’s causes, risk
factors, and optimal treatment approaches.

Electrocardiograms (ECGs) are essential for diagnosing cardiac arrhythmia and myocar-
dial infarction. However, accurate ECG interpretation demands expertise, and manual
analysis is time-consuming. Practitioners may require additional tests (e.g., stress tests, tilt-
table tests, electrophysiological tests) for uncertain cases, further increasing time and labor
demands onmedical institutions. Since the risk of a secondMI increases after the first, there’s
a clear need for automated ECG diagnostic tools that reduce the time and labor burden [7].
Despite the potential benefits of automated ECG interpretation, challenges remain. Accuracy
can be hindered by the variability of ECG waveforms across diverse patient populations.
Successful clinical integration also requires user-friendly software interfaces for medical
practitioners. While automated ECG diagnosis could significantly streamline the diagnosis
of cardiac abnormalities like arrhythmia and myocardial infarction, and AI/machine learning
algorithms show promise, further research is needed to overcome existing challenges and
enable widespread clinical adoption.

Researchers have explored machine learning techniques for automated cardiac arrhyth-
mia and myocardial infarction detection using ECGs [8–10]. However, ECG signals vary
between and within individuals, and effective diagnosis may require extracting different fea-
tures depending on the specific cardiovascular disorder. Due to the heterogeneity of these
conditions, it may even be necessary to extract distinct features for the same diagnosis.
Arrhythmia detection is a crucial focus for biomedical researchers, given the condition’s
prevalence and economic burden (affecting millions in the US alone, with costs up to $67.4
billion annually [11]). Traditional machine learning algorithms like modified Support Vector
Machines (SVM) and Random Forest (RF) have been used for automated ECG diagnosis.
However, these algorithms have limitations: SVM scales poorly with large datasets [12], and
RF is susceptible to overfitting with noisy data [13]. Deep learning approaches have emerged
as a more powerful and accurate alternative for automated ECG diagnosis [14, 15].

Deep learning models excel in learning ECG signal characteristics through weight and
bias optimization via backpropagation. This enables them to isolate individual ECG wave
embeddings, enhancing classification accuracy. Their potential for improving the speed
and precision of automated ECG diagnosis is crucial for effective cardiac arrhythmia
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management. Convolutional Neural Networks (CNNs) are popular for automated feature
extraction in ECG diagnosis [16]. Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), are also frequently used
due to the temporal dependencies within ECG signals [17–19]. While complex pre-trained
models (e.g., VGG-based [20], deep belief networks [21], dual attention mechanisms [22])
can boost accuracy, their computational cost and training time make them less suitable for
clinical settings [23].

Computationally efficient methods are essential in biomedical engineering, especially
where resources may be constrained [24]. To address this, we propose the eFuseNet model,
built on the traditional AlexNet architecture. eFuseNet uses fewer parameters than other pre-
trained networks for efficient detection of cardiac arrhythmia and myocardial infarction. Our
goal is to provide a cost-effective and automated diagnostic aid to medical professionals. We
evaluated eFuseNet on the MIT-BIH and PTB databases, employing 10-fold cross-validation
for robustness. We used an Ensemble Fusion Technique (EFT) to mitigate bias due to dataset
imbalance (a common issue in MIT-BIH and PTB). EFT also helps us achieve superior
accuracy and classification metrics. Our study’s key contributions include:

• The authors have optimized the traditional architectures such as AlexNet, Xception, and
ResNet50 specifically for 1-dimensional ECG signals, significantly reducing computa-
tional overhead compared to larger pre-trained models while preserving classification
accuracy.

• The authors designed an ensemble fusion model uniquely combining adapted AlexNet,
LSTM, and GRU. This approach effectively extracts deep features and models the tem-
poral dependencies inherent in ECG data.

• The ensemble model - eFuseNet generates a comprehensive feature set, integrating the
strengths of CNNs and RNNs. This richer representation has the potential to boost clas-
sification performance in diagnosing arrhythmia and myocardial infarction.

The rest of the paper is divided as the following: Section 2 discusses the related works
performed, Section 3 talks aboutmaterials andmethods used in the experimentation, Section 4
discusses the proposed method and Section 5 discusses the experimental results.

2 Related works

ECGsignals are time-based, andArrhythmia andMyocardial Infarction are time-series-based
classification problems. Concerning the time-series-based classification of both Myocardial
Infarction and Arrhythmia, we have reviewed literature that uses deep learning and machine
learning techniques to detect and classify Cardiac Arrhythmia and Myocardial Infarction.
Therefore, this section has explored methodologies that encompass both Deep Learning and
Machine Learning techniques.

In a study presented by Pal et al., CardioNet is proposed. CardioNet uses both the MIT-
BIH Arrhythmia dataset, PTB dataset, and a pre-trained DenseNet on ImageNet and adds
Transfer Learning to the model. A ratio of 80%:20% for training and testing was maintained
during experimentation. Additionally, the results of VGG, ResNet, ResNetV2, and Densenet,
were compared before selecting DenseNet as the focused model for this experimentation.
Furthermore, the weights obtained during DenseNet’s training on ImageNet are fine-tuned
to give optimal results in 10 epochs. CardioNet gives an accuracy of 98.92%, which proved
to be better than its competitive studies [25]. Hammad et al. propose a Deep Neural Network
(DNN) technique for digitalized classification and detection Arrhythmia. In their proposed
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DNN technique, first comes a learning stagewhere the accuracy is improved through effective
feature extractionmethods. After the learning stage, a Genetic Algorithm is used to aggregate
and combine the best results from feature extraction and classification. A Support Vector
Machine (SVM) classifier is used to classify the various types of Arrhythmia during the
experimentation. MIT-BIH Arrhythmia dataset is used during this experimentation, and an
average accuracy of 94% F1 score of 0.953 is obtained after the result [26].

Additionally, Zhang et al. pointed out the scope of improving classification results of
Arrhythmia since all the 12 leads in the ECG signal detection apparatus have varied con-
tributions to the detection of cardiac Arrhythmia. Thus, a Spatio-temporal Attention-based
Convolutional Recurring Neural Network (STA-CRNN) is presented by Zhang et al., which
gives close focus to the features along the temporal and spatial axis. The STA-CRNN consists
of a convolutional neural network subnetwork, Spatio-Temporal Attention Modules, and an
RNN subnetwork. The model mentioned above in the study by Zhang et al. shows remark-
able classification improvements achieving an average F1 score of 0.835 and proving to be
a promising model for automating Cardiac Arrhythmia Detection [27]. Hu et al. found the
ignorance of inter-heartbeat dependencies to detect and classify Cardiac Arrhythmia. Thus,
to overcome the issue, a novel transformer-based Deep Neural Network: ECG DETR is pro-
posed to perform cardiac Arrhythmia detection and classification on continuous ECG wave
signals. The study uses MIT-BIH Arrhythmia and MIT-BIH Atrial Fibrillation datasets used
in the scope of experimentation. Hu et al. experimentation yielded an average accuracy of
99.12% on the 8-way classification of Cardiac Arrhythmia, which proved to be better than
other comparative studies [28].

Furthermore, Natarajan et al. presented a unique arrhythmia classification technique that
amalgamates 22 static hand-crafted features, automatically extracted by a neural network
compromising aCNNand a transformer [29]. Stradthoof et al. trained an ensemble ofmultiple
neural networks on the PTB dataset and obtained a sensitivity of 93.3% and a specificity
of 89.7%. The results were evaluated with a 10-fold cross-validation based on real-time
patient-based sampling. The sampling used to cross-validate the results took input from the
standardized 12-lead input. During the experimentation, recurring and convolutional neural
networks are trained and observed before deciding on the final networks to be ensembled
together [30]. Wu et al. suggested a novel deep feature model based on the classification
and detection of Myocardial Infarction [31]. The proposed model’s approach is to learn
an illustration of the extracted feature that makes the classification process more efficient.
Furthermore, multiscale wavelet transformation is also used in feature learning to facilitate
the extraction of Myocardial Infarction features. A softmax regressor is used for multi-
class classification, and a PTB dataset is used for experimentation. This method proved
to be better than its comparative studies. Wang et al. proposed MENN: a multi-lead-based
ensemble neural network to classify and differentiateAnteriorMyocardial Infarction, Inferior
Myocardial Infarction fromHealthy Control. MENN is a combination of three sub-networks.
This ensembling method provides better classification accuracy when compared to other
baseline methods mentioned in the experimentation manuscript. The PTB dataset is used for
the scope of this research. Furthermore, the results have been cross-validated five times via
cross-fold validation [32].

The application of deep neural networks (DNNs) extends beyond ECG analysis to other
medical image classification tasks. For instance, Ali et al. employed a hybrid CNNmodel for
diabetic retinopathy detection [42]. Additionally, Ahmad et al. demonstrated the efficacy of
pre-trained CNNs for autism spectrum disorder detection from facial images [43]. Securing
medical image transmission is also paramount, as addressed by Alarood et al., who used deep
neural networks in their encryption approach [44]. These studies highlight the versatility of
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deep learning in addressing a spectrum of healthcare challenges. Additionally, deep learning
is actively being applied to brain tumor segmentation. Aslam et al. proposed an attention-
based, lightweight model (AML-Net) specifically designed for this task within the Internet of
Medical Things context [45]. Their model emphasizes efficiency and overcoming limitations
in existing encoder-decoder architectures.

DNNs require sizeable computational power to obtain highly accurate results. Further-
more, the number of parameters in a network is directly proportional to the computational
power required. Though the depth of the network may be directly proportional to its results, it
may not be viable to deploy in small-scale medical institutions. Hence, this paper introduces
a deep neural network (DNN) that exhibits reduced input parameters and computational
expenses, while still delivering comparable accuracy to the cutting-edge techniques. The
comparative analysis of existing techniques can be seen in Tables 1 and 2.

3 Materials andmethods

This section gives a brief description of both theMIT-BIHArrhythmia Database and the PTB
Dataset. Furthermore, the section talks about the method of pre-processing and segmentation
in the datasets used and explains the training parameters and the deep learning techniques
used for the experimentation.

3.1 Dataset description

3.1.1 ECG waves

The results of an ECG are displayed as a graph with peaks and valleys. The spots on the ECG
Diagnosis graph represent different waves of electrical activity. The waves in the graph can
be broken down into three distinct waves.

The following are the three waves:

• P wave: This wave depicts the electrical activity traveling from the ventricles to the atria
and running through the heart. These are the heart’s two chambers located at the top.

• QRS complex: This represents the electrical activity that occurs from the atrium to the
ventricles. These are the two chambers of the heart that are located lower down. The
largest wave in the QRS complex is the R wave.

• T wave: This illustrates the electrical activity that is taking place during the ventricular
repolarization of the heart. This indicates that it displays the electrical reset that the heart
goes through as it gets ready for the next cardiac cycle.

• ST segment: It is a flat, isoelectric section of anECGsignal that follows theQRS complex
and precedes the T wave. It represents the interval between ventricular depolarization
and repolarization and is used in clinical diagnosis to assess myocardial ischemia and
infarction. Any deviation from the baseline or a shift in the ST segment can indicate
underlying cardiac abnormalities, making it a crucial feature in ECG analysis.

The ST segment can be seen in the results of the ECG. The part of the waveform may
be seen between the end of the QRS complex and the beginning of the T wave. A person is
diagnosed with ST depression if the ST segment is shallow and falls below the baseline as
shown in Figs. 1 and 2 [46, 47]. ST depression is associated with a range of medical problems
[48].
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Fig. 1 ST segment of an ECG signal abnormally below baseline [46]

3.1.2 MIT-BIH arrhythmia database

The MIT-BIH Arrhythmia dataset contains 48 half-hour fragments of dual-channel ambula-
tory recordings from 47 subjects. Twenty-three recordings were selected randomly from a
massive set of a mixed population of inpatient and outpatient subjects. The other twenty-five
selected from the same set but included abnormal and clinically significant arrhythmias [49].
Depiction of various classes of the MIT-BIH Arrhythmia dataset is shown in Table 3 and
Fig. 3.

3.1.3 PTB database

The PTB data set was collected using a unique PTB prototype recorder. The database has
549 different recordings from 290 subjects aged between 17-87, with a mean of 57.2. The
dataset includes recordings of 15 simultaneous signals: 12 of them were the conventional
leads together, and the rest 3 were Frank lead ECG signals. The digitization rate was 1000
samples/sec with a resolution of 16 bit over a range of± 16.384mV [50]. The various classes
of the PTB dataset are depicted in Table 4 and Fig. 4.

3.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) is one of the most popular types of Deep Neural
Networks. It derives its name from the mathematical operation between vectors called con-
volution [51]. Convolutional Neural Networks consist of neurons analogous to the neurons
in our brain where the output of the last neuron is the input of the neuron ahead [52]. A CNN
consists of weights that are the parameters inside a neural network which converts the input

Fig. 2 ST segment of an ECG signal abnormally above baseline [47]
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Table 3 Description of MIT-BIH
database heartbeat classes
grouped according to the AAMI
standard

AAMI groups MIT-BIH class No. of samples

N Normal beat 75052

Left bundle branch block 7259

Right bundle branch block 8075

Atrial escape beat 16

Nodal (junctional) escape beat 229

S Atrial premature contraction beat 2546

Aberrated atrial premature beat 150

Nodal (junctional) premature beat 83

Supraventricularpremature beat 2

V Premature ventricular contraction 7130

Ventricular escape beat 106

F Fusion of ventricular and normal beat 803

Q Paced beat 7028

Fusion of paced and normal beat 982

Unclassified beat 33

data inside the network’s hidden layer. Weights are usually encompassed within the hidden
layers of the network.

It is a multi-layer deep neural network architecture consisting of many layers such as a
convolutional layer, activation layer, pooling layer, etc. [53]

Fig. 3 Graphical Representation of imbalance in the MIT-BIH Arrhythmia Dataset
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Table 4 Description of PTB
Diagnostic ECG Database Data

PTB Classes No. of subjects No. of records

Myocardial infarction (MI) 148 369

Cardiomyopathy/Heart failure 18 20

Bundle branch block 15 17

Dysrhythmia 14 16

Myocardial hypertrophy 7 7

Valvular heart disease 6 6

Myocarditis 4 4

Miscellaneous 4 4

Healthy controls (HC) 52 79

n/a 22 27

Total 290 549

1. Convolutional Layer: This layer consists of a rectangular grid of neurons. Since the con-
volutional layer takes inputs fromprevious layers, the previous layersmust be rectangular.
Here the weights are the same for each neuron. A CNNmay have multiple convolutional
layers which take inputs from the past layers and apply the same or different filters.
Mathematically a convolutional layer may be represented as shown in (1).

G[m, n] = ( f ∗ h)[m, n] =
∑

j

∑

k

h[ j, k] f [m − j, n − k] (1)

The above equation represents a convolution operation between an input image “f” and
a kernel “h” to produce an output matrix “G”. The indexes of the resulting matrix are
denoted by “m” and “n” to represent the rows and columns, respectively.

Fig. 4 Graphical Representation of imbalance in the PTB Dataset
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2. Max-pooling layer: Ahead of every convolutional layer, there may be a pooling layer
that takes Input from the rectangular block and subsamples the output to an operation
determining the maximum value in each block.

3. Activation layer: The activation layer is the final component of the convolutional layer. It
aims to enhance the non-linearity in the Input. In this experiment, ReLu has been used as
the activation function in the convolutional layer. Mathematically, ReLu can be described
as which is the maximum value between zero and the input value from the neuron.

CNN is a famous go-to architecture for many machine learning problems, especially in
image classification, computer vision, and natural language processing applications [54].

3.3 AlexNet

AlexNet is a convolution neural network, i.e., A neural network where the unseen layers are
composed of convolutional layers, pooling layers, and normalization layers [55]. Primarily
designed by Alex Krizhevsky in the paper [56], it was the first network that used a GPU to aid
its performance. The architecture comprises eight layers, ofwhich the first 5 are convolutional
layers, and the last three are fully connected [57]. The input dataset consisted of 256×256
RGB images from the ImageNet Dataset. A non-linear ReLU activation function was used
since it gave better results than the Sigmoid and the tanh function [58]. In addition, ReLu
normalized the data input to prevent saturation using their Local Response Normalisation
(LRN) technique. By doing so, top-1 and top-5 error rates were reduced by 1.4% and 1.2%,
respectively. AlexNet also allows for multi-parallel training methods by segregating the
neurons equally on each GPU. However, when AlexNet is compared with VGG, ResNet, and
other models, it stands less deep and struggles to absorb features from data sets. AlexNet has
been chosen in the scope of this experimentation because of its ability to parallel segmentation
which helps in the classification of signals. In addition to the previous point, AlexNet takes
less time to train and gives a robust output.

3.4 Long short termmemory

Long Short Term Memory is a type of Recurrent Neural Network architecture that was
designed keeping in mind a network that can remember previous data and relate the previous
data to make appropriate and suitable predictions. It was invented by Schmidhuber in 1997
[59]. LSTM averts the vanishing gradient issue by adding three gated units: forget gate, the
output gate, and the input gate. These gates are used to effectively preserve the memory of
previous states [60].

The vector equations presented below provide a mathematical representation of Long
Short-Term Memory (LSTM) networks. The LSTM takes an input vector x(t), which can
either be the output of a Convolutional Neural Network (CNN) or the input sequence itself.
The LSTM also receives the hidden state vector h(t-1) and cell state vector c(t-1) from
the previous timestep. The output vector o(t) for the current timestep is generated by the
LSTM, which also updates the cell state vector and hidden state vector for the next timestep,
represented by c(t) and h(t), respectively. The equations below illustrate the different stages
of an LSTM cell, and (2) to (7) provide the mathematical equations for an LSTM cell.

ft = σg
(
W f × xt +U f × ht−1 + b f

)
(2)

it = σg (Wi × xt +Ui × ht−1 + bi ) (3)
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ot = σg (Wo × xt +Uo × ht−1 + bo) (4)

c′
t = σc (Wc × xt +Uc × ht−1 + bc) (5)

ct = ft · ct−1 + it · c′
t (6)

ht = ot · σc (ct ) (7)

where, ft is forget gate, it is input gate, ot is output gate, ct is cell state, ht is hidden state,
σg : sigmoid , σc : tanh.

Similar to CNN, LSTM is used in a variety of machine learning application fields, par-
ticularly in the areas requiring pattern recognition applications such as Speech Recognition
and Natural Language Processing [61]. The working of a LSTM cell is shown in Fig. 5.

3.5 Gated recurring units

Similar to LSTMs, Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network
architecture that solves the vanishing gradient problem by adding two gates such that the
update gate and reset gate [60]. This reduces the number of gating signals when compared
to the LSTMs. The GRU RNN can mathematically be represented as shown in (8).

ht = (1 − zt ) � ht−1 + zt � h̃t

h̃t = g (Whxt +Uh (rt � ht−1) + bh)
(8)

And the two gates can be represented mathematically as depicted in the (9).

zt = σ (Wzxt +Uzht−1 + bz)

rt = σ (Wr xt +Urht−1 + br )
(9)

Like LSTM, GRU is extensively used in the areas used for predictions by pattern recog-
nition applications [62]. The working of a GRU cell is shown in Fig. 6.

Now that we have reviewed the foundational concepts of Convolutional Neural Networks
(CNNs), AlexNet, Long Short-TermMemory (LSTM), andGatedRecurrentUnit (GRU), and
gained an understanding of our dataset, wewill now deep dive into the proposedmethodology
and the eFuseNet model.

Fig. 5 Graphical Representation of an LSTM Cell
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Fig. 6 Graphical Representation of an GRU Cell

4 Proposedmethod

4.1 Dataset preprocessing and segmentation

It is complicated to derive meaningful data from the unfiltered ECG signal in the MIT-
BIH dataset due to extraneous features such as baseline, electro-myography disturbance,
wandering, and power-line interference, which is why a step of filtration is necessary prior to
advance processing procedures [63]. Since over-filtration will cause the loss of meaningful
data, in the scope of this experiment, the authors eliminated the noise-baseline wandering that
considerably impacts ECG classification. The movement and respiration of the patient cause
baseline were wandered. Following earlier works, two median filters are elected to achieve
baseline wandering, subtracting it from the signal to yield correct ECG signals without
baseline wandering.

Before classifying the ECG signals, we need to segment individual heartbeat components
from the Electrocardiogram samples [64]. Also, precise detection of QRS waves is required
along with the fiducial tips of the heartbeats.

The heartbeats contain a variety of high-precision QRS waves and fiducial tips. Using
specific annotatedR-peak locations as fiducial tip points, the authors segmented the following
ECG signal into a sequence of heartbeats which can be directly compared with other works.
We acquired 190 samples before and 110 samples after the peak of the R-wave for every
heartbeat to obtain a fixed size of 300 sample ECG signals. As a result, the sample peaks have
been taken as the foremost heartbeat waves. The complete flowchart for data preprocessing
can be seen in Fig. 7.

4.2 Modified alexnet architecture

AlexNet was originally designed to address the image classification problem using deep con-
volutional neural networks. However, ECG signals are a type of one-dimensional time series
data, which requires modifications to the traditional AlexNet architecture, which accepts
two-dimensional input. In this study, a modified version of the AlexNet architecture has been
utilized to accept one-dimensional input data. Additionally, to prevent the model from over-
fitting, a dropout layer has been added between the convolution layer and the fully connected
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Fig. 7 Flow Chart of Data
Preprocessing
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layer. This dropout layerwith a dropout rate of 0.5 helps eliminate 50%of the neurons in every
iteration, resolving the issue of exploding gradients. Moreover, the size of the convolutional
layer strides and the number of nodes in the fully connected layer have also been adjusted.
The proposed modified AlexNet architecture, including all modifications, is illustrated in
Fig. 8.

4.3 Training parameters

4.3.1 Loss function: categorical cross-entropy

Loss Functions are computational methods to learn the error between actual and predicted
results. There are various Loss functions available [65, 66]. Our study employs two variants of
cross-entropy loss, chosen based on the specific classification tasks. For detectingmyocardial
infarction (a binary classification problem), the authors utilized the binary cross-entropy loss
function as shown in (10). For arrhythmia classification (a multi-class problem), the authors
used the categorical cross-entropy loss function as shown in (11).

J (w) = − 1

N

N∑

i=1

[
yi log

(
ŷi

) + (1 − yi) log
(
1 − ŷi

)]
(10)

where,
* w: Model parameters (weights and biases) * N : Number of samples * yi : True label (0

or 1) for sample i * ŷi : Predicted probability of sample i belonging to the MI class

J (w) = − 1

N

N∑

i=1

M∑

c=1

yi,c log
(
ŷi,c

)
(11)

where,
* w: Model parameters (weights and biases) * N : Number of samples * M : Number of

arrhythmia classes * yi,c: True label (1 if sample i belongs to class c, otherwise 0) * ŷi,c:
Predicted probability of sample i belonging to class c

Fig. 8 Modified AlexNet Architecture
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4.3.2 Optimizer: adam

In the presented research, the authors employed theAdam optimization algorithm to optimize
our deep convolutional neural network model during training. This algorithm utilizes an
exponential decay scheme to calculate the past gradients (mt ) and past squared gradients (vt ),
as demonstrated by (12) and (13) respectively. The hyperparameters β1 and β2 dictate the
rate at which the mean and non-centered variance of the gradient are forgotten, respectively.
Through keeping track of these two measures, the Adam optimizer estimates the first and
second moments of the gradients and utilizes them to adaptively adjust the learning rate.

mt = β1mt−1 + (1 − β1)

[
δL

δwt

]
(12)

vt = β2vt−1 + (1 − β2)

[
δL

δwt

]2
(13)

where,

1. ε = a small positive constant to avoid denominator becoming zero when (vt− > 0) ·(
10−8

)

2. β1&β2 = decay rates of the average of gradients in the above two methods.
(β1 = 0.9&β2 = 0.999 )

3. α denotes the step size or learning rate, which is typically set to 0.001. It determines the
magnitude of adjustment made to the model’s parameters during each iteration of the
optimization process.

4.3.3 Classifier - softmax

In order to classify the extracted features, a Softmax classifier has been employed. The
Softmax function is defined as:

σ(z)i = ezi
∑

j = 1K ez j
for i = 1, . . . , K (14)

where z = (z1, . . . , zK ) represents the vector of class scores and σ(z)i represents the pre-
dicted probability of class i . This function converts a vector of real-valued scores into a
probability distribution over K classes. The denominator in the equation ensures that the
output is a valid probability distribution, where all the values range between 0 and 1 and the
sum of all values is equal to 1.

4.4 Proposed ensemble fusionmodel - eFuseNet

To address the challenges of prediction variance and generalization in ECG classification, we
propose eFuseNet, a novel ensemble fusion model. eFuseNet integrates a modified AlexNet
architecture, LSTM, andGRUnetworks.We tailor the pre-trainedAlexNetCNN to effectively
extract discriminative features from1-dimensional ECGwaveforms,makingmodifications to
suit our input data and classification task. These extracted features, representing higher-level
abstractions of the ECG signal, are then fed as input to both the LSTM and GRU sub-models
in parallel. These RNN variants excel in capturing the long-range temporal dependencies
prevalent in ECG time-series data. eFuseNet fuses the outputs of the AlexNet+LSTM and
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AlexNet+GRU sub-models through concatenation, feeding them into a final fully-connected
layer. This approach leverages the complementary strengths of CNN-based feature extrac-
tion and RNN-based temporal modeling, with the goal of mitigating biases and improving
classification robustness.

eFuseNet employs parallel AlexNet+LSTM and AlexNet+GRU sub-models, strategically
combining their outputs to mitigate potential biases and exploit the complementary strengths
of CNNs and RNNs. We optimize eFuseNet using Adam, a robust adaptive gradient descent
algorithm, with Categorical Cross-Entropy as the loss function to guide multi-class arrhyth-
mia classification. A final Softmax layer generates probabilistic outputs. To enhance the
efficiency of the model, the authors used the different hyperparameters as shown in Table 5.

While computationally complex, with 38,955,535 total parameters (517 trainable),
eFuseNet’s architecture is designed to prioritize accurate arrhythmia classification. Our pri-
maryobjective is to surpass the performanceof single-model approaches in classifyingdiverse
arrhythmia types within ECG time-series data. Figure 9 illustrates the proposed model -
eFuseNet architecture.

5 Experimental results and discussion

5.1 Dataset division

Reliability is a crucial factor to considerwhen assessing amedical decision-makingmodel. To
ensure efficient evaluation, it is recommended to split the data into three parts - Training Set,
Validation Set, and Testing Set. This practice helps prevent overfitting and model selection
bias. The ratio in which the dataset is divided depends on the dataset’s size. For instance,
the authors divided the MIT-BIH dataset into 64% for training, and 16-20% for validation
and testing, respectively. However, the authors evaluated model’s performance on the PTB
dataset to test its robustness. For this, we divided the data into 72% for training, 8% for
validation, and 20% for testing. Table 6 illustrates the distribution of the PTB dataset for
the 72-8-20 split, while Table 7 shows the distribution for the five classes of the MIT-BIH
Arrhythmia Dataset for the 64-16-20 split.

Table 5 Hyperparameters Set for
the Model Training

Hyperparameters Values

1st momentum Decay Rate (β1) 0.9

2nd momentum Decay Rate (β2) 0.999

Epsilon (ε) 1e-7

Starting Learning rate (α) 0.001

Factor 0.1

Patience 10

Total Epochs 250-300

Optimizer Adam

Dropout value 0.5

Batch Size 32
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Fig. 9 Graphical abstract of the proposed work

5.2 Experimental setup

The present investigation utilized the Tensorflow framework for coding implementation,
and the Models were trained on a workstation equipped with Intel® Core™ i7-10610U
Processor and Nvidia GeForce® GTX 1650 GPU. Training was conducted for a range of
100-500 epochs to achieve optimal accuracy in training, validation, and testing, for both the
MIT-BIH Arrhythmia and PTB datasets.

5.3 Evaluationmetrics

To assess the performance, the authors used the models’ accuracy and F1-score as evaluation
metrics.

1. Precision: It is a statistical metric used to evaluate the performance of a model. It is cal-
culated by dividing the number of accurately predicted positive instances (True Positives)
by the sum of the True Positive and False Positive instances. This metric is essential in

Table 6 Distribution of PTB
Dataset

Myocardial Infarction Healthy controls

Training Set 106 38

Validation Set 12 4

Testing Set 30 10

123



Multimedia Tools and Applications

Table 7 Distribution of MIT-BIH
Arrhythmia Dataset

N S V F Q

Training Set 19794 984 1302 9 850

Validation Set 4949 246 326 2 214

Testing Set 6186 308 407 3 265

assessing how well a model performs in predicting positive outcomes.

Precision = True Positives

True Positives + False Positives
(15)

2. Sensitivity (Recall): It is another performance metric used to evaluate the performance
of a model, especially in binary classification problems. Sensitivity is the ability of the
model to correctly identify positive instances, and it is calculated as the ratio of true
positives to the sum of true positives and false negatives:

Sensitivity = True Positives

True Positives + False Negatives
(16)

3. F1 Accuracy: It is a combined metric of Precision and Recall of a particular classifier
which is calculated through the harmonic mean of Precision and Recall

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(17)

4. Confusion Matrix: It is a metric to evaluate the performance of a classification model,
and it can help visualize how the model is performing in terms of classifying positive and
negative cases. It represents the number of true positives, false positives, true negatives,
and false negatives for each class in a tabular format. The rows and columns of the
matrix correspond to the predicted and actual class labels, respectively. The confusion
matrices for different models, including EfuseNet, and their performance are shown in
Figs. 10 and 11.

Fig. 10 Graphical representation of the ConfusionMatrices of best performing architectures and the EfuseNet
when tested on the MIT-BIH dataset
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Fig. 11 Graphical representation of the ConfusionMatrices of best performing architectures and the EfuseNet
when tested on the PTB dataset

5. 10-fold cross-validation: Cross-validation is a resampling technique used to assess
machine learningmodels on a small data sample. Themain purpose of cross-validation in
applied machine learning is to assess the strength and resilience of a model. The auhtors
have used k-fold cross-validation using the following steps:

• The authors trained proposed model arbitrarily ten times.
• The authors evaluated the accuracy of model 10 times and calculated the mean of all
accuracies to test the robustness of the model.

Table 8 depicts the experimental results obtained on various architectures and the Pro-
posed model EfuseNet on performing 10 Folds.

5.4 Results

Our experimentation examined various pre-trained deep neural networks on the MIT-BIH
Arrhythmia and the PTB Myocardial datasets. Since most pre-trained models use image
inputs, we modified the pre-trained models to accept 1-dimensional input (This is elaborately
explained in Section 4.2).After analyzing the performance ofmultiple pre-trained deep neural
networks, the authors tested the pre-trained models with various optimizers and recorded the
results.

The authors conducted the experimentation with LeNet-5 and AlexNet, applying all seven
optimizers to test. The results can be seen in Tables 9 and 10, respectively. From Table 9,
it is clear that the result of Lenet-5 on PTB as well as MIT-BIH database are not up to
the mark. AlexNet provided sound results; however, it had a lot of parameters. Thus, the
auhors experimented with Xception, ResNet, and DenseNet for all seven optimizers on both
the MIT-BIH Arrhythmia and the PTB Myocardial datasets, results of which are shown in
Tables 11, 12, and 13 respectively.

TheMIT-BIHDataset has five classes: N, SVEB, VEB, F, and Q. During experimentation,
our primary interest was to devise a model that was efficient in terms of both accuracy and
training time since the MIT-BIH dataset has an enormous sample space. In the MIT-BIH
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Fig. 12 Loss curve of training procedure of eFuseNet on MIT-BIH dataset

Arrhythmia dataset, Xception gave the best accuracy of 98.81% with Nadam Optimizer with
an F-1 score of 0.93. Xception, when used with Adamax optimizer, gave an accuracy of
98.77% with an F-1 score of 0.926. Beyond these, AlexNet gave an accuracy of 98.73%
with Adamax and SGD optimizers, respectively. However, since the MIT-BIH dataset has
five classes, Xception was slow to classify a sample into five classes, despite its impressive
results. Xception proved superior in accuracy, but AlexNet outshined Xception in efficiency
matters.

The PTB dataset has nine classes. However, we are performing Binary Classification on
the dataset into two classes: Myocardial Infarction and Healthy Controls. Xception gave an
accuracy of 99.69%, a sensitivity of 99.26%, a specificity of 99.85, and an F1 score of 0.99.
However, even with fewer samples in the PTB dataset, Xception took a long time to train.
AlexNet gave impressive results, slightly less thanXception, butmuchmore efficient in terms
of training time as compared to Xception. AlexNet, when trained with optimizers RMSprop
and Adamax, gave a 99.59% accuracy, which matched Xception’s performance. The loss and
accuracy curve of various architectures and EfuseNet on the MIT-BIH dataset is shown in
Figs. 12 and 13. At the same time, the loss and accuracy curve of various architectures and
EfuseNet on the PTB dataset is shown in Figs. 14 and 15.
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Fig. 13 Accuracy curve of training procedure of eFuseNet on MIT-BIH dataset
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Fig. 14 Loss curve of training procedure of eFuseNet on PTB dataset

6 Discussion

This paper presents a comprehensive study of the performance of various neural networks
along with an eFuseNet: a proposed ensemble fusion deep neural network that detects and
classifies Arrhythmia and Myocardial Infarction. The results of various pre-trained neural
networks are presented in the results section. Furthermore, the authors have tested vari-
ous neural networks on all seven optimizers - Adam, SGD, RMSprop, Adamax, Adagrad,
Adadelta, and Nadam.

Since most of pre-trained models required image inputs, the authors modified the network
architecture that enabled us to give 1-Dimensional Electrocardiograms as input.We observed
that a lot of research had been done to improve metrics such as accuracy and F1-score.

Thus,the authors proposed eFuseNet model, that gives robust results and does not take
much time to train. Furthermore, since previous studies highlighted the bias problem because
of unbalanced datasets, the authors used an ensemble fusion technique to counter that bias.

eFuseNet gives an accuracy of 98.76% on the MIT-BIH and a 99.48% accuracy on the
PTB dataset, demonstrating competitive performance compared to pre-existing methods to
classify Arrhythmia and Myocardial Infarction. Furthermore, EFuseNet is computationally
efficient compared to other studies mentioned in Table 2.
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Fig. 15 Accuracy curve of training procedure of eFuseNet on PTB dataset
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7 Conclusion and future direction

This study explored the utilization of ECG signals for detecting and classifying arrhythmia
and myocardial infarction using the MIT-BIH and PTB datasets. We conducted a thorough
investigation of various pre-trained networks and optimizers, offering insights into effective
configurations for ECGanalysis. Our proposed ensemblemodel, combiningAlexNet, LSTM,
andGRU, demonstrated exceptional performance with test accuracies of 98.76% and 99.48%
on the MIT-BIH and PTB datasets, respectively. These findings can serve as a valuable
reference for researchers in the field.

While our results are promising, it’s important to acknowledge potential weaknesses. The
reliance on the MIT-BIH and PTB datasets could be expanded in future work to include
more diverse and potentially noisy real-world ECG data. Additionally, the computational
complexity of our ensemble model could be addressed through optimization techniques,
making it more suitable for resource-limited clinical environments. Moreover, integrating
explainability methods could enhance the model’s interpretability for clinicians. Looking
ahead, our approachmight be adaptable to diagnose other cardiovascular conditions or applied
to different types ofmedical sensor data. Thiswork lays a foundation for further advancements
in automated cardiac diagnosis, with the potential to improve clinical workflows and patient
outcomes.

Data availibility The data used in this study is publicly available at below links:
1. MIT-BIH: https://physionet.org/content/mitdb/1.0.0/.
2. PTB: https://physionet.org/content/ptbdb/1.0.0/.
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